

F.X.Trias*, A.Gorobets*,*, M.H.Silvis[†], R.W.C.P.Verstappen[†], A.Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

*Keldysh Institute of Applied Mathematics of RAS, Russia

F.X.Trias*, A.Gorobets*,*, M.H.Silvis[†], R.W.C.P.Verstappen[†], A.Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

*Keldysh Institute of Applied Mathematics of RAS, Russia

F.X.Trias*, A.Gorobets*,*, M.H.Silvis[†], R.W.C.P.Verstappen[†], A.Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

*Keldysh Institute of Applied Mathematics of RAS, Russia

F.X.Trias*, A.Gorobets*,*, M.H.Silvis[†], R.W.C.P.Verstappen[†], A.Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

*Keldysh Institute of Applied Mathematics of RAS, Russia

A new subgrid characteristic length	Results for LES	Conclusions

Contents

- 2 A new subgrid characteristic length
- 3 Results for LES

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
○●○	0000	000000	

$$\begin{array}{ll} \partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} = \nabla^2 \overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) &; \quad \nabla \cdot \overline{u} = 0 \\ \text{eddy-viscosity} &\longrightarrow & \tau & (\overline{u}) = -2\nu_e S(\overline{u}) \end{array}$$

¹F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	0000	000000	00
Subgrid	characteristic length for LE	S: state of the	e art

$$\partial_{t}\overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nabla^{2}\overline{u} - \nabla\overline{p} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

eddy-viscosity $\longrightarrow \tau (\overline{u}) = -2\nu_{e}S(\overline{u})$

$$\nu_{e} = (C_{m}\delta)^{2} D_{m}(\overline{u})$$

¹F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
○●○	0000	000000	

$$\partial_{t}\overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nabla^{2}\overline{u} - \nabla\overline{p} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

eddy-viscosity $\longrightarrow \tau (\overline{u}) = -2\nu_{e}S(\overline{u})$
$$\boxed{\nu_{e} = (C_{m}\delta)^{2}D_{m}(\overline{u})}$$

 $D_m(\overline{u}) \longrightarrow$ Smagorinsky (1963), WALE (1999), Vreman (2004), QR-model (2011), σ -model (2011), S3PQR¹ (2015)...

¹F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
○●○	0000	000000	

$$\partial_{t}\overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nabla^{2}\overline{u} - \nabla\overline{p} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

eddy-viscosity $\longrightarrow \tau (\overline{u}) = -2\nu_{e}S(\overline{u})$

$$\nu_e = (C_m \delta)^2 D_m(\overline{u})$$

 $D_m(\overline{u}) \longrightarrow$ Smagorinsky (1963), WALE (1999), Vreman (2004), QR-model (2011), σ -model (2011), S3PQR¹ (2015)...

 $C_m \longrightarrow$ Germano's dynamic model (1991), Lagrangian dynamic (1995), Global dynamic approach (2006)

¹F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
○●○	0000	000000	

$$\partial_{t}\overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nabla^{2}\overline{u} - \nabla\overline{p} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

eddy-viscosity $\longrightarrow \tau (\overline{u}) = -2\nu_{e}S(\overline{u})$

$$\nu_e = (C_m \delta)^2 D_m(\overline{u})$$

 $D_m(\overline{u}) \longrightarrow$ Smagorinsky (1963), WALE (1999), Vreman (2004), QR-model (2011), σ -model (2011), S3PQR¹ (2015)...

 $C_m \longrightarrow$ Germano's dynamic model (1991), Lagrangian dynamic (1995), Global dynamic approach (2006)

δ ?

¹F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000			

• In the context of LES, most popular (by far) is:

$$\delta_{\rm vol} = (\Delta x \Delta y \Delta z)^{1/3} \qquad \qquad \text{Deardorff (1970)}$$

$$\delta_{\rm Sco} = f(a_1, a_2) \delta_{\rm vol}, \qquad \delta_{L^2} = \sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)/3}$$

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000			

• In the context of LES, most popular (by far) is:

$$\delta_{\rm vol} = (\Delta x \Delta y \Delta z)^{1/3} \qquad \qquad \text{Deardorff (1970)}$$

$$\delta_{\rm Sco} = f(a_1, a_2) \delta_{\rm vol}, \qquad \qquad \delta_{L^2} = \sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)/3}$$

• In the context of **DES**:

$$\delta_{\max} = \max(\Delta x, \Delta y, \Delta z)$$
 \Leftarrow Sparlart et al. (1997)

Recent flow-dependant definitions

$$\delta_{\omega} = \sqrt{(\omega_x^2 \Delta y \Delta z + \omega_y^2 \Delta x \Delta z + \omega_z^2 \Delta x \Delta y)/|\omega|^2} \iff \text{Chauvet et al. (2007)}$$

$$\tilde{\delta}_{\omega} = \frac{1}{\sqrt{3}} \max_{n,m=1,\dots,8} |I_n - I_m| \iff \text{Mockett et al. (2015)}$$

$$\tilde{I}_{\text{SLA}} = \tilde{\delta}_{\omega} F_{\text{KH}}(VTM) \iff \text{Shur et al. (2015)}$$

δ

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	●000		00
5			

Research question:

 Can we find a simple and robust definition of δ that minimizes the effect of mesh anisotropies on the performance of subgrid-scale models?

Research question:

• Can we find a **simple and robust** definition of δ that minimizes the effect of **mesh anisotropies** on the performance of subgrid-scale models?

Starting point:

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	0000	000000	00

Idea: δ , appears in a natural way when we consider the leading term of the Taylor series expansion of the subgrid stress tensor,

²F.X.Trias, A.Gorobets, M.H.Silvis, R.W.C.P.Verstappen, A.Oliva. *A new subgrid characteristic length for turbulence simulations on anisotropic grids*, **Physics of Fluids**, (accepted).

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	0000	000000	00

Idea: δ , appears in a natural way when we consider the leading term of the Taylor series expansion of the subgrid stress tensor,

A least-square minimization leads to²

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

²F.X.Trias, A.Gorobets, M.H.Silvis, R.W.C.P.Verstappen, A.Oliva. *A new subgrid characteristic length for turbulence simulations on anisotropic grids*, **Physics of Fluids**, (accepted).

A new subgrid characteristic length	Results for LES	Conclusions
0000		

Properties of new definition

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

A new subgrid characteristic length	Results for LES	Conclusions
0000		

$$\delta_{\rm lsq} = \sqrt{\frac{\boldsymbol{G}_{\delta}\boldsymbol{G}_{\delta}^{T}:\boldsymbol{G}\boldsymbol{G}^{T}}{\boldsymbol{G}\boldsymbol{G}^{T}:\boldsymbol{G}\boldsymbol{G}^{T}}}$$

• Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)

A new subgrid characteristic length	Results for LES	Conclusions
0000		

$$\delta_{\rm lsq} = \sqrt{\frac{\boldsymbol{G}_{\delta}\boldsymbol{G}_{\delta}^{T}:\boldsymbol{G}\boldsymbol{G}^{T}}{\boldsymbol{G}\boldsymbol{G}^{T}:\boldsymbol{G}\boldsymbol{G}^{T}}}$$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leqslant \delta_{lsq} \leqslant \Delta z$ (assuming $\Delta x \leqslant \Delta y \leqslant \Delta z$)

A new subgrid characteristic length	Results for LES	Conclusions
0000		

 $\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leq \delta_{lsq} \leq \Delta z$ (assuming $\Delta x \leq \Delta y \leq \Delta z$)
- Sensitive to flow orientation, *e.g.* for rotating flows $(G = \Omega)$

$$\delta_{\rm lsq} = \sqrt{\frac{\omega_x^2(\Delta y^2 + \Delta z^2) + \omega_y^2(\Delta x^2 + \Delta z^2) + \omega_z^2(\Delta x^2 + \Delta y^2)}{2|\omega|^2}}$$

A new subgrid characteristic length	Results for LES	Conclusions
0000		

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leq \delta_{lsq} \leq \Delta z$ (assuming $\Delta x \leq \Delta y \leq \Delta z$)
- Sensitive to flow orientation, e.g. for rotating flows $(G = \Omega)$

$$\delta_{\rm lsq} = \sqrt{\frac{\omega_x^2(\Delta y^2 + \Delta z^2) + \omega_y^2(\Delta x^2 + \Delta z^2) + \omega_z^2(\Delta x^2 + \Delta y^2)}{2|\omega|^2}}$$

Applicable to unstructured grid

Idea: $\frac{\partial \phi}{\partial x} \approx \frac{\phi_{i+1} - \phi_i}{\Delta x} \implies$ you can compute *G*; then, you can compute $\delta_{lsq}!$

A new subgrid characteristic length	Results for LES	Conclusions
0000		

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leq \delta_{lsq} \leq \Delta z$ (assuming $\Delta x \leq \Delta y \leq \Delta z$)
- Sensitive to flow orientation, e.g. for rotating flows $(G = \Omega)$

$$\delta_{\rm lsq} = \sqrt{\frac{\omega_x^2(\Delta y^2 + \Delta z^2) + \omega_y^2(\Delta x^2 + \Delta z^2) + \omega_z^2(\Delta x^2 + \Delta y^2)}{2|\omega|^2}}$$

Applicable to unstructured grid

Idea: $\frac{\partial \phi}{\partial x} \approx \frac{\phi_{i+1} - \phi_i}{\Delta x} \implies$ you can compute *G*; then, you can compute $\delta_{lsq}!$

• Easy and cheap

A new subgrid characteristic length	Results for LES	Conclusions
0000		

 $\Delta = \left(\begin{array}{cc} \beta & 0\\ 0 & \beta^{-1} \end{array}\right) \qquad \mathbf{G} = \left(\begin{array}{cc} 0 & 1\\ 1 - 2\omega & 0 \end{array}\right)$

Introduction 000	A new subgrid characteristic length 0000	Results for LES ●00000	Conclusions 00
Results fo	or LES		
Decaving isotro	opic turbulence		

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment

Introduction 000	A new subgrid characteristic length 0000	Results for LES ○●○○○○	Conclusions
Results fo	r LES		
Turbulent char	inel flow		

Introduction 000	A new subgrid characteristic length 0000	Results for LES 00●000	Conclusions 00
Results fo	r LES		
Turbulent char	inel flow		

 $Re_{\tau} = 395$ DNS Moser et al. LES $32 \times 32 \times N_z$

³F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	0000	0000●0	
Results for LI	ES		

Turbulent flow around square cylinder at Re = 22000

 LES^4 19524 \times N_z

⁴F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

Introduction 000	A new subgrid characteristic length 0000	Results for LES	Conclusions

Results for LES

Turbulent flow around square cylinder at Re = 22000

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	0000		●○
Concludin	g remarks		

 \bullet A new definition for δ has been proposed

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{\mathsf{T}}:GG^{\mathsf{T}}}{GG^{\mathsf{T}}:GG^{\mathsf{T}}}}$$

- It is locally defined, well-bounded, cheap and easy to implement
- LES tests: HIT, turbulent channel flow \checkmark
- ullet LES on unstructured grids: turbulent flow around square cylinder \checkmark
- DES tests: turbulent jet (not shown here) \checkmark

Introduction	A new subgrid characteristic length	Results for LES	Conclusions
000	0000		●○
Concluding	g remarks		

• A new definition for δ has been proposed

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{\mathsf{T}}:GG^{\mathsf{T}}}{GG^{\mathsf{T}}:GG^{\mathsf{T}}}}$$

- It is locally defined, well-bounded, cheap and easy to implement
- LES tests: HIT, turbulent channel flow \checkmark
- ullet LES on unstructured grids: turbulent flow around square cylinder \checkmark
- DES tests: turbulent jet (not shown here) \checkmark

Takeaway message:

• Definition of δ can have a big effect on simulation results

A new subgrid characteristic length	Results for LES	Conclusions
		00

Thank you for your attention

