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Abstract

In this study, we develop a machine-learning-based
data-driven model, which predicts comfort-related
flow parameters in a ventilated room. The model
is based on the results of high-fidelity computational
fluid dynamics (CFD) simulations with different ge-
ometrical configurations and boundary conditions.
The developed model could be used as a cheaper al-
ternative to CFD for applications where rapid pre-
dictions of complex flow configurations are required,
such as model predictive control. Even though the de-
veloped model provides acceptable accuracy for most
of the tested configurations, more input data is re-
quired to improve the model performance.

Key Innovations

e Developed model is capable of providing results
at an accuracy comparable to CFD simulations.

e Once trained, the model provides the results al-
most instantly.

Practical Implications

The quality of the input data is crucial for the data-
driven models. The input data should cover as many
different working conditions as possible and come
from a reliable source. Once the model is completed,
the predictions are produced almost instantly.

Introduction

The outburst of airborne transmissible coronavirus
disease (COVID-19) has highlighted the importance
of ensuring adequate indoor air quality to reduce
the risk of infection contamination in confined spaces
(Morawska et al., 2020). One of the important as-
pects of ensuring indoor air quality is proper design
and precise control of air parameters. Therefore,
fast and accurate computation of indoor airflow is re-
quired for testing different design options or perform-
ing model predictive control (MPC) using real-time
weather and occupant behavior data.

Nowadays, air distribution in buildings is usually
evaluated by multizone models (Axley, 2007), zonal
models (Megri and Fariborz, 2007), and CFD. Multi-
zone models are the most popular choice due to the
low computational cost, but they have limited ap-

plicability because each room is represented by only
one node. Zonal models are considered intermediate
between multizone and CFD, but they usually suf-
fer from case dependency. In CFD, the solution pro-
vides a complete set of air parameters for each point
of the physical domain. Nonetheless, CFD is always
a compromise between computational cost and accu-
racy. Accurate CFD simulations require big compu-
tational resources while using ordinary office comput-
ers results in unreasonably long run-times (Morozova
et al., 2018, 2019). Grid coarsening and RANS turbu-
lence modeling are common ways to reduce the cost of
CFD, but they can lead to overly inaccurate results.
Moreover, according to Morozova et al. (2020), the
growth of computational resources in the foreseeable
future would not be enough to make CFD available
for routine use in building applications. This means
that new numerical models capable of proving the
accuracy comparable with high-fidelity CFD, but at
considerably lower computational cost, are needed.

Over the last years, several attempts to develop alter-
native to zonal and multizone reduced-order models
for building simulations have been made. For exam-
ple, Li et al. (2018) investigated a multiple model
approach for predictive control of indoor thermal
environment using proper orthogonal decomposition
(POD). Phan and Lin (2017) developed a reduced-
order model of a data center with multi-parameters
using the POD method. Both developed models suc-
cessfully reduce the simulation time while maintain-
ing an acceptable level of accuracy. However, the
models focus on temperature and thermal load pre-
dictions and do not consider motion-related flow pa-
rameters, which are usually more complex as they are
described by nonlinear processes.

Data-driven models (DDMs) are gaining popularity
in building modeling applications due to their accu-
rate approximations of nonlinear processes. For ex-
ample, Athavale et al. (2019) and Fang et al. (2019)
compared different DDM approaches for temperature
prediction in data centers, and concluded that predic-
tions produced by the model are in good agreement
with the reference CFD results. Warey et al. (2020)
created a vehicle cabin thermal comfort model using
machine learning (ML) and high-fidelity CFD simu-
lation results with a test error of less than 5%. More-



over, DDMs are widely used in MPC. For instance,
DDM-MPC for heating ventilation and air condition-
ing (HVAC) systems were developed for a univer-
sity building (Ruano et al., 2016), an airport (Huang
et al., 2015), and a residential building (Afram et al.,
2017). All the aforementioned researchers note that
DDMs produce accurate predictions at a low compu-
tational cost.

DDMs are based on using data analysis to find rela-
tions between system state variables without explicit
knowledge of the physical behavior of the system.
They can be developed relatively easy since they do
not require an understanding of system physics. To
train these models, a comprehensive set of the high-
quality input-output dataset is needed for all possible
working conditions. The accuracy of DDM decreases
when training data deviates from testing data. There-
fore, it is critical to use training data that covers all
the operating conditions, which could be challenging.
However, difficulties in obtaining high-fidelity train-
ing data are compensated by the high accuracy and
the low computational cost of the resulting model,
according to Afram et al. (2017). Therefore, DDMs
could be used for complex indoor environments with
stratification, natural and forced convection, where
low order models cannot be relied on, and computa-
tionally expensive CFD simulations are required.

In this work, we develop ML-based DDM, which uses
the data from high-fidelity CFD simulations. It pre-
dicts comfort-related airflow parameters in a venti-
lated room with a heated floor. The main focus of
our research is on investigating the capabilities and
limitations of this model as a cheaper alternative to
CFD, taking into account specific requirements for in-
door environmental applications. We study how the
input data affects the quality of prediction.

Governing equations and physical prob-
lem

Governing equations

The incompressible Navier-Stokes equations for a
Newtonian fluid with constant physical properties
are considered. The Boussinesq approximation is
adopted to account for the density variations due
to temperature difference. Thermal radiation is ne-
glected. Under these assumptions, the governing
equations are
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where u = (u, v, w) is the velocity vector in Cartesian
coordinates x = (x,¥, z), p the pressure, T the tem-
perature, v the kinematic viscosity, p the density, g

the gravitational acceleration, 8 the thermal expan-
sion coefficient and « the thermal diffusivity.

Hereafter, all the results are presented in dimension-
less form. The reference values of time, velocity, tem-
perature, and length are ¢,.; = H/Uref, Urey = Uip,
AT, and H, respectively, where H is the cavity
height, U;, - inlet bulk velocity, and AT =Ty, — T, -
the temperature difference.

Physical problem

The physical set up used in the predictive model is
a three-dimensional ventilated cavity with a heated
floor. This configuration was studied experimentally
by Blay et al. (1992). The geometry of the stud-
ied cavity is shown in Figure 1. The depth ratio of
the cavity is Aq = D/H = 0.3/1.04. Cold air at
T. = —0.5 enters the cavity through the long thin
inlet at the top of the left wall. The inlet velocity
profile in the vertical (y) direction corresponds to a
parabolic Poiseuille flow. The inlet slot has an as-
pect ratio A;, = hy/H = 0.018/1.04. The air is
discharged through the outlet with an aspect ratio
Aout = hout/H = 0.024/1.04 at the bottom of the
right wall of the cavity. The bottom wall is main-
tained at a hot temperature of T}, while the three
other sidewalls are kept at the cold temperature of
T.. The cavity is filled with air (Pr = v/a = 0.71)
at Rayleigh number based on the cavity height Ra =
pgBATH?/(va) = 2.4 x 10°.
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Figure 1: Geometry of the studied test case.

We build the input-output dataset by changing the
height aspect ratio of the cavity (A, = H/W)
and the Froude number based on the inlet height
(Fry,, = Upn/VpgBATh;,). We use 5 different
height aspect ratios - A, = [0.25,0.5,1.0,2.0,4.0]
and 20 different Froude numbers - Fry, =
[1.10,1.50,2.00, ...,5.00, 5.24, 5.50, ..., 10.00]. The
changes in the Froude number are produced by vari-
ations in the inlet bulk velocity (U;,), thus Pr and
Ra numbers remain constant. Chosen combinations
of Fry,, — Ap are realistic and relevant for the indoor
environmental applications.



Model definition

Input parameters

As input parameters of the model, we initially
consider Froude number based on the inlet height
(F'rp,, ), cavity height aspect ratio (A4;), temperature
(T), and velocity magnitude (V) probes at 11 dif-
ferent locations on the mid-depth cavity plane (z =
D/2). In total, we use 24 (Frp,,, + Ap + 11T + 11V)
input parameters. The positions of the probes are
shown in the figure 2. In the results section, we an-
alyze which probes have the smallest contribution to
the accuracy of the prediction. As a result of this
analysis, two probes are eliminated, and the total
number of input parameters is reduced to 20.
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Figure 2: Locations of the input data probes on the
mid-depth plane for the cavity with the height aspect
ratio Ay = 1.

Output parameters

As the output parameters, we choose five global flow
quantities for comparison: average Nusselt number
on the hot wall - < Nu>, jet separation point - s,
average kinetic energy - < E'>, average enstrophy - <
Q> and the average temperature of the cavity. The
jet separation point is a point at the top cavity wall,
where the wall-shear stress < 7y > is equal to zero,
as shown in the equation (6). Other flow parameters
are calculated using equations (4) - (8).
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where A is the surface of the hot wall, V' is the volume
of the cavity, u = (u,v,w) is the velocity vector in
Cartesian coordinates x = (x,y,2), and w =V x u is
the vorticity. All these quantities are time-dependent
and averaged over time. Standard bracket “<>” no-
tation is used for time-averaged values.

These quantities represent basic airflow properties
and are relevant to the thermal comfort according
to ISO (2005). Nusselt number and cavity temper-
ature represent the thermal properties of the flow.
Nusselt number is a measure of heat transfer. It is
computed using the temperature gradient at the bot-
tom hot wall. The average temperature is the opera-
tive room temperature. Kinetic energy measures the
level of motion. Enstrophy corresponds to turbulence
intensity. Kinetic energy, enstrophy, and jet separa-
tion point are used to measure draught and the level
of velocity discomfort.

Methods

CFD simulations

To generate input and output data for the model,
we use LES simulations on staggered grids with
second-order symmetry-preserving spatial discretiza-
tion (Verstappen and Veldman, 2003) and a one-
parameter fully explicit second-order temporal dis-
cretization scheme developed by Trias and Lehmkuhl
(2011). To perform the simulations, we use an in-
house CFD code developed by Gorobets et al. (2010)
and the LES-S3PQ turbulence model (Trias et al.,
2015). This numerical configuration showed the best
trade-off between the computational cost and accu-
racy for this flow configuration, according to to Moro-
zova et al. (2020). The computational grid resolution
for the cavity with the A, = 11is Ny x Ny x N, =
100 x 160 x 32 = 5.12 x 10° control volumes. The
number of grid points in the horizontal (x) direction
is rescaled accordingly to the value of Ap. All simula-
tions run for 500 non-dimensional time units, which
was found to be a long enough time-integration pe-
riod to record the flow statistics for further averaging.
In total, we carry out 100 CFD simulations, 15% of
which are reserved for testing, and 85% are used in
the model training.

Data-driven model

According to the findings of Morozova et al. (2021)
artificial neural network (ANN) ML algorithm shows
the best performance for these applications. ANN
is the most common ML-based data-driven modeling
framework where the output is mapped to the input
using a set of interconnected nodes or neurons. The
neural network used in this work consists of one input
layer, one hidden layer, and one output layer. The
number of neurons in the input and output layer rep-
resents the number of model parameters and output
values. The number of neurons in the hidden layer is
equal to 16 and is chosen by trial and error (Figure 4).



Each neuron in the hidden layer is connected to every
neuron in the preceding layer via links with specific
weights W;;. Equation (9) represents the output of a
neuron (y;) in a layer where n; is the number of neu-
rons in the preceding layer, ¢ is the index for neurons
in the preceding layer, f is the non-linear activation
function, x; is the input parameter, and b; is the bias
term associated with the neuron.

yi=1r (Z Wijz; + bj) (9)

i=1

Training the neural network involves determining the
appropriate combination of the number of hidden lay-
ers, the number of neurons in each of the hidden lay-
ers, and the associated weight coefficients that mini-
mize the prediction error.

In our work, we use open-source Keras (Chollet, 2015)
ANN ML library. To improve the results of the pre-
diction and avoid model overfitting (lack of gener-
alization), we adopt k-fold cross-validation (Stone,
1974) and dropout regularisation (Srivastava et al.,
2014) techniques. K-fold cross-validation is a resam-
pling procedure based on the parameter k that refers
to the number of groups a given data sample is to be
split into. The value of k equal to 10 has shown the
best performance for the developed model. Dropout
is a regularization method, where during the model
training procedure, some of the layer outputs are
randomly ignored or “dropped out”, increasing the
sparsity of the system. In our work we adopted the
dropout rate equal to 0.2, as it showed the best per-
formance in the experiments.

Results

This section shows the results obtained by the cre-
ated model and its assessment towards optimal per-
formance. In order to quantify the accuracy of the
model, we use local relative prediction error (RE),
and mean relative error (MRE), which are calculated
as detailed in the equations (10) and (11).

RE(g) = 121— %l (10)
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where N is the number of data points, ¢4 stands for
the data, and ¢, stands for the model prediction. We
assume that the less than 15% RE is acceptable for
this model.

Model assessment

In this subsection, we explain how some of the DDM
parameters affect its accuracy. The important com-
ponent of every DDM is the quantity and the quality
of input data. To train our model, we used the re-
sults of 85 CFD simulations, but it is interesting to

see how the prediction accuracy changes depending
on the amount of input data. Results of this anal-
ysis are shown in Figure 3. The number of simula-
tions in the input dataset has not yet converged and
could be increased to improve the prediction accu-
racy. However, the computational cost of high-fidelity
CFD should be taken into account. The model devel-
opment is ongoing, and the results of this work will
be taken into account when the decision of the config-
urations of the extra CFD simulations will be taken.
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Figure 3: Mean relative error (MRE) of the studied
flow parameters for different number of samples in
the training dataset.

The number of neurons in the hidden layer directly
affects the performance of the ANN model. Nonethe-
less, the available literature does not provide any clear
guidelines for the optimal number of neurons. In gen-
eral, the number of neurons in the hidden layer should
lie somewhere in between the number of neurons in
the input layer and the number of neurons in the out-
put layer. We performed a comparison of the model
performance against the number of neurons in the
hidden layer (Figure 4). The ANN with 16 neurons
showed the smallest MREs for all of the studied flow
parameters.

Optimal probe combinations

In order to create a reduced-order model, we initially
chose 11 probes of velocity magnitude V' and tem-
perature T as model input parameters. Locations of
the probes inside the cavity are chosen to take into
account the possibility of using sensor readings as
model input parameters. Furthermore, in order to
reduce the number of input parameters, we analyze
which probes are crucial for accurate predictions and
which could be eliminated without losing the model
accuracy. This is determined by the specific weights
of the data and the mean relative prediction error,
equation (11). Results of the analysis are detailed in
Table 1.

Probes 3 and 4 have the smallest specific weights in
the model, their elimination does not significantly de-
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Figure 4: Mean relative error (MRE) of the studied
flow parameters for different number of neurons in

the hidden layer.

Table 1: Mean relative prediction error of the studied
flow parameters for different combinations of probes.

Probes MRE

removed <Nu> <Ty> Tep <E> <O>
none 0.144 0.018 0.014 0.086 0.095
3 0.146 0.023  0.067 0.082 0.102
3.4 0.154 0.051  0.068 0.093 0.118
3,4,6 0.197 0.076  0.084 0.145 0.144
3,4,6,7 0.343 0.165 0.115 0.195 0.228

crease the accuracy of the model. The specific weight
of probe 6 is the next smallest after 3 and 4. Af-
ter elimination of the probe 6, MRE of most the
flow parameters does decrease much, however, the
accuracy of the kinetic energy and enstrophy predic-
tions has dropped significantly. Further elimination
of the next probe with the smallest weight (probe 7)
leads to big errors in the prediction of Nusselt num-
ber, kinetic energy, and enstrophy. For the further
tests, we chose the model with 20 input parameters
(Fry,, + Ap + 9T + 9V), using the probes 1, 2, and
5-11, showed in the Figure 2.

Average cavity temperature and the flow separation
point are the parameters, which are predicted with
the highest accuracy. Nusselt number is also pre-
dicted fairly well, however, the accuracy of its pre-
diction mostly depends on the data from probe 7,
located near the hot wall. Nonetheless, kinetic en-
ergy and enstrophy are difficult to predict accurately
with the amount of data available. More simulations
are required to improve the quality of the prediction
for the kinetic energy and enstrophy.

Prediction quality across the test cases

The accuracy of the model is evaluated using two-
dimensional plots, where the local relative prediction

error (equation (10) is plotted for the tested combina-
tions of Froude number (Fry,,, ) and height aspect ra-

tios (Ap). Tested combinations are chosen randomly
from the dataset and were not used in the model
training process. The plots are shown in the Fig-
ures 5-9. The horizontal (x) axis of the figures is the
Froude number, the spanwise (y) axis is the cavity
height aspect ratio, and the vertical (z) axis is the
relative prediction error RE(¢), detailed in the equa-
tion (10). The color scales from light to dark shows
the values of errors from high to low, respectively.
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Figure 5: Relative error (RE) of the Nusselt number
< Nu > prediction plotted for different combinations
of Froude number (Fry, ) and the cavity height aspect

ratio (Ap).

Relative error for the Nusselt number is shown in the
Figure 5. It shows low RE values for most of the
combinations of F'ry, — Ap, except the area of small
Froude numbers and the small cavity aspect ratio (tall
cavity). For most of the configurations, the relative
error lies within a 15% margin, however, it rises to
30% for some of the test points. The big values of
errors could be explained by the dominance of the
natural convection in the tall cavities with the small
inlet velocities, which produce higher flow stratifica-
tion. Flow stratification is difficult to resolve accu-
rately.

The average cavity temperature (Figure 6) is accu-
rately predicted for all of the Froude number - cavity
width combinations. The relative error does not ex-
ceed 10%. However, the tendency is different - the
errors are bigger in the area with the long cavities
Flow separation point is shown in the Figure 7. It is
predicted well for most of the tested cases. The rela-
tive error value does not exceed 9% and is around 5%
for most of the tested combinations of Fry,, — Ap.
Nonetheless, the flow separation point is predicted
more accurately for the small cavity A, (short cavi-
ties), which are associated with lesser flow separation.
In these geometrical configurations the flow separa-
tion happens closer to the right wall of the cavity
or at the right wall itself, which makes its accurate
evaluation easier.
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Average kinetic energy (Figure 8) is more difficult
to predict correctly. The specific geometry of the

tested cases makes the accuracy of the model depend
on the flow separation. In the areas with a higher
Fry,, number flow separation starts closer to the
right wall of the cavity, thus, the secondary vortex
is not formed. The presence of the secondary vortex
makes the flow more complex, hence, the relative er-
ror increases. The secondary vortex is formed either
when the cavity is long (big Ap) or when the inlet
velocity is small (low Fry, ).
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Figure 9: Relative error (RE) of the enstrophy <>
prediction plotted for different combinations of Froude
number (Frp, ) and the cavity height aspect ratio

(An).

Average enstrophy (Figure 9) is a characteristic of
turbulence intensity, so it is the most difficult quan-
tity to predict accurately. Moreover, the accuracy of
the prediction, similar to the average kinetic energy,
depends on the existence of the secondary flow vor-
tex. For most of the tested combinations, the relative
error is around 10%, however, it rises to 35% for the
flow configurations with a secondary vortex.

As could be concluded from the results, an ML-based
DDM is capable of providing predictions of airflow pa-
rameters at an acceptable level of accuracy for most
of the tested ranges. However, the model struggles
to provide reliable results for rather complex flows,
where the flow separation phenomenon forms a sec-
ondary vortex. More data provided for these partic-
ularly complicated combinations of inlet velocity and
cavity length could potentially improve the quality of
the predictions.

Discussion

In this section, we discuss the computational cost of
the simulations, problems, and limitations of the de-
veloped model.

The computational cost of the model development is a
combination of the computational cost of CFD simu-
lations and the model training cost. The latter is neg-
ligible - it takes approximately 3 minutes to train the
model on a personal computer using only one CPU
core. Moreover, after the training is completed, the



prediction is produced almost instantly. The main
computational effort is used to produce high-fidelity
CFD data for the model training. It takes approx-
imately 215 CPU hours per simulation, thus, the
whole dataset with 100 simulations uses around 21500
CPU hours. Taking into account, that the estimated
electricity cost of one CPU hour using Amazon Web
Services (2021) is 0.01€, the total electricity cost of
the used dataset with 100 CFD simulations is 215€.
This is reasonable computational and financial cost
for the DDM development, taking into account that
these CFD simulations are carried out only once, in
order to form the input dataset, and will not be re-
peated.

One of the main bottlenecks of the DDMs is the neces-
sity of big sets of high-fidelity data. In our work, we
used a dataset of 100 CFD simulations. It is a good
dataset to start the model development and identify
critical points with weak predictions, but it should be
significantly increased, in order to develop a reliable
model.

Another important limitation of the developed mod-
eling framework is its applicability. Even though a
wide range of room geometries and inlet velocities was
tested, the model is not universal and does not cover
a full extension of possible indoor environmental con-
figurations. The DDMs could be used for the flow
configurations with complex physical phenomena like
natural and forced convection or stratification and
widely used building geometry. This makes DDMs
applicable in the situations where other reduced-order
models do not provide sufficient accuracy and reduces
its case dependency. Unfortunately, these models are
not suitable for complex geometries. Hence, DDMs
could be used for applications where a combination
of fast and accurate predictions is required, for exam-
ple, for model predictive control. Data-driven models
are capable of providing rapid predictions for com-
mon room geometries. And as they are based on
high-fidelity data (CFD simulations), they take into
account temperature and velocity distributions in-
side individual rooms. The combination of the afore-
mentioned factors makes data-driven modeling frame-
works an interesting option for the MPC.

Conclusions

In this work, we created a ML-based DDM for
predicting the comfort-related flow parameters in a
three-dimensional ventilated cavity with a heated
floor. The developed DDM provides rapid and ac-
curate predictions using an ordinary office computer.
The modeling framework chosen is the ANN with one
hidden layer. The model input parameters are the
values of the temperature and velocity magnitude at 9
locations within the cavity domain (Figure 2), and the
output parameters are the average Nusselt number
on the hot wall, jet separation point, average kinetic
energy, average enstrophy, and the average tempera-

ture of the cavity. The model is capable of predicting
these parameters with acceptable accuracy (the mean
relative error varies between 5% and 15%), however,
the accuracy for some of the most complex flow con-
figurations was insufficient. More high-fidelity data
is required to construct a robust and reliable model.
Extra CFD simulations will be carried out for these
complex flow configurations.

The work on improving this model is ongoing. In the
future, we would like to amplify the available train-
ing data, study how different input configurations af-
fect the quality of the predictions, find a trade-off
between the quantity and the quality of the training
data, namely, explore different turbulence models and
grid resolutions. Moreover, we plan to work on the
extrapolating capabilities of the DDMs.
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