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ABSTRACT

The essence of turbulence are the smallest scales of motion. They result from a subtle balance between

convective transport and diffusive dissipation. Mathematically, these terms are governed by two differen-

tial operators differing in symmetry: the convective operator is skew-symmetric whereas the diffusive is

symmetric and positive-definite. On the other hand, accuracy and stability need to be reconciled for sim-

ulations of turbulent flows in complex geometries. With this in mind, an energy-preserving discretization

for unstructured grids was proposed in Ref. [1]: it exactly preserves the symmetries of the underlying

differential operators on collocated grids. Hence, unlike other formulations, the discrete convective oper-

ator transports energy from a resolved scale of motion to other resolved scales without dissipating energy,

as it should do from a physical point-of-view. Therefore, we think that apart from being a right approach

for large-scale DNSs of turbulence, it also forms a solid basis for testing subgrid scale LES models.

The discretization is based on only five operators (i.e. matrices): the cell-centered and staggered con-

trol volumes (diagonal matrices), Ωc and Ωs, the face normal vectors, Ns, the cell-to-face interpolation,

Πc→s and the cell-to-face divergence operator, M. Therefore, it constitutes a robust approach that can

be easily implemented in already existing codes such as OpenFOAM R© [2]. Moreover, for the sake of

cross-platform portability and optimization, CFD algorithms must rely on a very reduced set of (alge-

braic) kernels (e.g. sparse-matrix vector product, SpMV; dot product; linear combination of vectors).

This imposes restrictions and challenges that need to be addressed such as the inherent low arithmetic

intensity of the SpMV, the reformulation of flux limiters [3] or the efficient computation of eigenbounds

to determine the time-step, ∆t. Results showing the benefits of symmetry-preserving discretizations

will be presented together with novel methods aiming to keep a good balance between code portability,

numerical robustness and performance.
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