

An energy-preserving unconditionally stable method for DNS and LES simulations on unstructured grids

<u>F.Xavier Trias</u>¹, Daniel Santos¹, Jannes Hopman¹, Andrey Gorobets², Assensi Oliva¹

 $^1{\rm Heat}$ and Mass Transfer Technological Center, Technical University of Catalonia $^2{\rm Keldysh}$ Institute of Applied Mathematics of RAS, Russia

An energy-preserving unconditionally stable method for DNS and LES simulations on unstructured grids

<u>F.Xavier Trias</u>¹, Daniel Santos¹, Jannes Hopman¹, Andrey Gorobets², Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Keldysh Institute of Applied Mathematics of RAS, Russia

Motivation 00000	Preserving symmetries at discrete level	Portability and beyond	Conclusions

Contents

- 2 Preserving symmetries at discrete level
- Ortability and beyond

4 Conclusions

Motivation ●0000	Preserving symmetries at discrete level	Portability and beyond	Conclusions 00
Motivation			

Research question #1:

• Can we construct numerical discretizations of the Navier-Stokes equations suitable for **complex geometries**, such that the **symmetry properties** are exactly preserved?

DNS¹ of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Motivation ●0000	Preserving symmetries at discrete level	Portability and beyond	Conclusions 00
Motivation			

Research question #1:

• Can we construct numerical discretizations of the Navier-Stokes equations suitable for **complex geometries**, such that the **symmetry properties** are exactly preserved?

DNS² of backward-facing step at $Re_{\tau} = 395$ and expansion ratio 2

²A.Pont-Vílchez, F.X.Trias, A.Gorobets, A.Oliva. *DNS of Backward-Facing Step flow* at $Re_{\tau} = 395$ and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.

Motivation 0●000	Preserving symmetries at discrete level	Portability and beyond	Conclusions

Motivation

Research question #2:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

	1995	2000	2005	2010	2015	2020	
Techno	ology Tren	ds in HPC	4	SPU MIC		FPGA	
	single-core (CPU clusters	multi-o	ore CPU clusters		hybrid clusters	- >
				HBM	MAVLin	ĸ	

³X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021.

⁴A.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Motivation 0●000	Preserving symmetries at discrete level	Portability and beyond	Conclusions
N.4			

Motivation

Research question #2:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

HPC²: portable, algebra-based framework for heterogeneous computing is being developed³. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are being considered⁴.

³X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021.

⁴Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Motivation 00000	Preserving symmetries at discrete level	Portability and beyond	Conclusions 00
Motivation			
Frequently use	d general purpose CFD codes:		

- STAR-CCM+
- Code-Saturne ٠
- OpenFOAM

Motivation 00●00	Preserving symme		Portability and beyond	Conclusions 00
Motivation				
Frequently use	ed general p	ourpose CFD cod	es:	
• STAR-C	CM+	CD-adapco	SIEMENS	
 ANSYS 	-FLUENT	ANSYS °		and

FLUENT

Eddy-viscosity type LES models

Main common characteristics of LES in such codes:

- Unstructured finite volume method, collocated grid

Open ∇FOAM®

Second-order spatial and temporal discretisation

Code-Saturne

OpenFOAM

10¹ 10²

 $19 \times 78 \times 28$

 $\Delta x^{+}=60, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=20$

10

10⁰

38×78×57

 $\Delta x^{+}=30, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=10$

101

10²

10

10-1

10-2 10-

10¹ 10²

 $13 \times 76 \times 20$

 $\Delta x^{+} = 90, \Delta y^{+}_{wall} = 0.5, \Delta z^{+} = 30$

⁵E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

10¹ 10²

 $19 \times 78 \times 28$

 $\Delta x^{+}=60, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=20$

10

10⁰

101

 $38 \times 78 \times 57$

 $\Delta x^{+}=30, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=10$

10²

10

• Are LES results are merit of the SGS model?

10-1

0 10-2 10

10¹ 10²

 $13 \times 76 \times 20$

 $\Delta x^{+}=90, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=30$

⁵E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

• Are LES results are merit of the SGS model? Apparently NOT !!! X

 $19 \times 78 \times 28$

 $\Delta x^{+}=60, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=20$

10¹ 10²

10

10⁰

101

 $38 \times 78 \times 57$

 $\Delta x^{+}=30, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=10$

10²

10

10-1

0 10-2 10-

10¹ 10²

 $13 \times 76 \times 20$

 $\Delta x^{+}=90, \Delta y^{+}_{wall}=0.5, \Delta z^{+}=30$

⁵E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation

Open ∇ FOAM® LES⁶ results of a turbulent channel for at $Re_{\tau} = 180$

 $\nu_{num} \neq 0$

⁶E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method* for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation 0000●	Preserving symmetries at discrete level	Portability and beyond	Conclusions

Motivation

Open ∇ FOAM® LES⁶ results of a turbulent channel for at $Re_{\tau} = 180$

 $\nu_{SGS} < \nu_{num} \neq 0$

⁶E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method* for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
00000	•00000		00
Motivation			

Research question #1:

• Can we construct numerical discretizations of the Navier-Stokes equations suitable for **complex geometries**, such that the **symmetry properties** are exactly preserved?

DNS¹ of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Portability and beyond

Symmetry-preserving discretization

Continuous

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Motivation 00000 Preserving symmetries at discrete level 000000

Portability and beyond

Symmetry-preserving discretization

Continuous

Discrete

Portability and beyond

Symmetry-preserving discretization

Continuous

Discrete

$$\langle \boldsymbol{a}, \boldsymbol{b}
angle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

Portability and beyond

Symmetry-preserving discretization

Continuous

Discrete

 $\left\langle \textit{\textit{C}}\left(\textit{\textit{u}},\varphi_{1}
ight),\varphi_{2}
ight
angle =-\left\langle \textit{\textit{C}}\left(\textit{\textit{u}},\varphi_{2}
ight),\varphi_{1}
ight
angle$

 $\mathsf{C}\left(\boldsymbol{u}_{h}\right)=-\mathsf{C}^{T}\left(\boldsymbol{u}_{h}\right)$

Portability and beyond

Symmetry-preserving discretization

Continuous

Discrete

$$\langle oldsymbol{a},oldsymbol{b}
angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

 $C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$ $\Omega G = -M^T$

Portability and beyond

Conclusions

Symmetry-preserving discretization

Continuous

Discrete

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p} \qquad \Omega^2$$
$$\nabla \cdot \boldsymbol{u} = 0$$

$$\Omega \frac{d\boldsymbol{u}_{h}}{dt} + C(\boldsymbol{u}_{h}) \boldsymbol{u}_{h} = \boldsymbol{\mathsf{D}} \boldsymbol{u}_{h} - \boldsymbol{\mathsf{G}} \boldsymbol{\rho}_{h}$$
$$\mathsf{M} \boldsymbol{u}_{h} = \boldsymbol{\mathsf{0}}_{h}$$

$$\langle oldsymbol{a},oldsymbol{b}
angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

 $\begin{array}{l} \langle \boldsymbol{C} \left(\boldsymbol{u}, \varphi_1 \right), \varphi_2 \rangle = - \left\langle \boldsymbol{C} \left(\boldsymbol{u}, \varphi_2 \right), \varphi_1 \right\rangle \\ \langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = - \left\langle \boldsymbol{a}, \nabla \varphi \right\rangle \\ \left\langle \nabla^2 \boldsymbol{a}, \boldsymbol{b} \right\rangle = - \left\langle \boldsymbol{a}, \nabla^2 \boldsymbol{b} \right\rangle \end{array}$

$$C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$$
$$\Omega G = -M^T$$
$$D = D^T \quad def - D$$

Motivation	Preserving symmetries at discrete level	Portability and beyond
	00000	

Why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

$$\Omega_s \frac{d\boldsymbol{u}_s}{dt} + C(\boldsymbol{u}_s) \boldsymbol{u}_s = \boldsymbol{\mathsf{D}} \boldsymbol{u}_s - \boldsymbol{\mathsf{G}} \boldsymbol{p}_c; \quad \boldsymbol{\mathsf{M}} \boldsymbol{u}_s = \boldsymbol{\mathsf{0}}_c$$

In staggered meshes

- $p-u_s$ coupling is naturally solved \checkmark
- $C(u_s)$ and D difficult to discretize X

Motivation	Preserving symmetries at discrete level	Portability and beyond
	00000	

Why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

$$\Omega_{c}\frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s})\boldsymbol{u}_{c} = \boldsymbol{\mathsf{D}}\boldsymbol{u}_{c} - \boldsymbol{\mathsf{G}}_{c}\boldsymbol{p}_{c}; \quad \boldsymbol{\mathsf{M}}_{c}\boldsymbol{u}_{c} = \boldsymbol{\mathsf{0}}_{c}$$

In collocated meshes

- *p*-*u_c* coupling is cumbersome X
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory,... ✓

Portability and beyond

Conclusions

Why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...

STAR-CCM+
 ANSYS-FLUENT
 Code-Saturne
 OpenFOAM
 OpenFOAM

$$\Omega_{c} \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s}) \boldsymbol{u}_{c} = \mathsf{D}\boldsymbol{u}_{c} - \mathsf{G}_{c}\boldsymbol{p}_{c}; \quad \mathsf{M}_{c}\boldsymbol{u}_{c} = \boldsymbol{0}_{c}$$

In collocated meshes

- *p*-*u_c* coupling is cumbersome X
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory,... 🗸

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} L_{c} L^{-1} M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{X}$
- Energy: $\boldsymbol{p}_{c} (L L_{c}) \boldsymbol{p}_{c} \neq 0 \boldsymbol{X}$

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} \left[L_{c}L^{-1}\right]M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0$

Motivation 00000	Preserving symmetries at discrete level	Portability and beyond	Conclusions 00
Pressure-ve	locity coupling on coll	ocated grids	

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} [L_{c}L^{-1}]M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \times$ Energy: $\boldsymbol{p}_{c}(L L_{c}) \boldsymbol{p}_{c} \neq 0 \times$

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} [L_{c}L^{-1}]M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{X}$
- Energy: $p_c (L L_c) p_c \neq 0$

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (L_{c}L^{-1})M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c((L-L_c))p_c \neq 0 X$

⁷Shashank, J.Larsson, G.Iaccarino. *A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit,* **Journal of Computational Physics**, 229: 4425-4430,2010.

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} [L_{c}L^{-1}]M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{X}$
- Energy: $p_c (L L_c) p_c \neq 0 X$

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken...

In summary⁷:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (\boldsymbol{L}_{c} \boldsymbol{L}^{-1}) M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0 X$

⁷E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken can almost be broken...

⁸E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Motivation	Preserving symmetries at discrete level	Portability and beyond	Conclusions
	000000		

A vicious circle that cannot be broken can almost be broken...

⁸E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Portability and beyond 000

Pressure-velocity coupling on collocated grids Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations⁹:

⁹R.Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. *Parallel Direct Poisson solver for discretizations with one Fourier diagonalizable direction*. Journal of Computational Physics, 230:4723-4741, 2011.

Pressure-velocity coupling on collocated grids Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations⁹:

⁹F.X.Trias and O.Lehmkuhl. *A self-adaptive strategy for the time-integration of Navier-Stokes equations*. Numerical Heat Transfer, part B, 60(2):116-134, 2011.

Algebra-based approach naturally leads to portability

Research question #2:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

HPC²: portable, algebra-based framework for heterogeneous computing is being developed. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are being considered¹⁰.

¹⁰Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Algebra-based approach naturally leads to portability, to simple and analyzable formulations

ContinuousDiscrete
$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
 $\Omega \frac{d \boldsymbol{u}_h}{dt} + \boldsymbol{C}(\boldsymbol{u}_h) \boldsymbol{u}_h = \boldsymbol{D} \boldsymbol{u}_h - \boldsymbol{G} \boldsymbol{p}_h$ $\nabla \cdot \boldsymbol{u} = 0$ $\boldsymbol{M} \boldsymbol{u}_h = \boldsymbol{0}_h$ $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$ $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$ $\langle \boldsymbol{C}(\boldsymbol{u}, \varphi_1), \varphi_2 \rangle = -\langle \boldsymbol{C}(\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$ $\boldsymbol{C}(\boldsymbol{u}_h) = -\boldsymbol{C}^T(\boldsymbol{u}_h)$ $\langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = -\langle \boldsymbol{a}, \nabla \varphi \rangle$ $\Omega \boldsymbol{G} = -\boldsymbol{M}^T$ $\langle \nabla^2 \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \nabla^2 \boldsymbol{b} \rangle$ $\boldsymbol{D} = \boldsymbol{D}^T$

¹¹Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

¹¹A.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Benefits for Poisson solver are 3-fold:

- Higher arithmetic intensity (AI)
- Reduction of memory footprint
- Reduction in the number of iterations

$$\hat{\mathsf{L}} = \mathsf{S}\mathsf{L}\mathsf{S}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\boldsymbol{d})$$

SpMM can be used \implies higher Al

¹¹ Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Benefits for Poisson solver are 3-fold:

- Higher arithmetic intensity (AI)
- Reduction of memory footprint
- Reduction in the number of iterations
- \rightarrow Overall speed-up up to x2-x3 \checkmark \rightarrow Memory reduction of ≈ 2 \checkmark

$$\mathbf{\hat{L}} = \mathsf{SLS}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\mathbf{d})$$

SpMM can be used \implies higher Al

¹¹ Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Other SpMM-based strategies to **increase AI** and **reduce memory** footprint:

- Multiple transport equations
- Parametric studies
- Parallel-in-time simulations
- Go to higher-order?

$$\hat{\mathsf{L}} = \mathsf{SLS}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\mathbf{d})$$

SpMM can be used \implies higher Al

¹¹ À.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. *Exploiting spatial symmetries for solving Poisson's equation*. Journal of Computational Physics, 486:112133, 2023.

Motivation 00000	Preserving symmetries at discrete level	Portability and beyond	Conclusions ●0
Concludin	remarks		

• Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.

ຮ

Marel A

¹² A.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

¹³N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

Portability and beyond

Conclusions

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies¹² to improve its perfomance.

¹² A.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

¹³N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. **Computer Physics Communications**, 271:108230, 2022.

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies 12 to improve its perfomance.

Merel A

On-going research:

• Rethinking standard CFD operations (e.g. flux limiters¹³, boundarv conditions, CFL,...) to adapt them into an algebraic framework (Leitmotiv: maintaining a minimal number of basic kernels is crucial for portability!!!)

 $^{^{12} \}lambda Alsalti-Baldellou, X. {\rm \acute{A}}lvarez-Farr{\acute{e}}, F.X. Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation.$ Journal of Computational Physics, 486:112133, 2023.

¹³N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications. 271:108230, 2022.

Motivation 00000	Preserving symmetries at discrete level	Portability and beyond	Conclusions 00

Thank you for your attendance