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INTRODUCTION

We consider the numerical simulation of the incompressible

Navier-Stokes (NS) equations. In primitive variables they read

∂tu+ C(u, u) = Du−∇p, ∇ · u = 0, (1)

where u denotes the velocity field, p represents the kinematic

pressure, the non-linear convective term is given by C(u, v) =
(u · ∇) v, and the diffusive term reads Du = ν∆u, where ν is

the kinematic viscosity. Direct simulations at high Reynolds

numbers are not feasible because the convective term produces

far too many scales of motion. Hence, in the foreseeable future,

numerical simulations of turbulent flows will have to resort to

models of the small scales. The most popular example thereof

is the Large-Eddy Simulation (LES). Shortly, LES equations

result from filtering the NS Eqs.(1) in space

∂tu+ C(u, u) = Du−∇p−∇ · τ(u) ; ∇ · u = 0, (2)

where u is the filtered velocity and τ(u) is the subgrid stress

tensor and aims to approximate the effect of the under-

resolved scales, i.e. τ(u) ≈ u⊗ u − u ⊗ u. Because of its

inherent simplicity and robustness, the eddy-viscosity assump-

tion is by far the most used closure model

τ(u) ≈ −2νeS(u), (3)

where νe denotes the eddy-viscosity. Following the same nota-

tion than in [1], the eddy-viscosity can be modeled as follows

νe = (Cmδ)2Dm(u), (4)

where δ is a subgrid characteristic length. Cm and Dm are the

constant and differential operator associated with the model.

A 5D PHASE SPACE FOR EDDY-VISCOSITY MODELS

The essence of turbulence are the smallest scales of mo-

tion. They result from a subtle balance between convective

transport and diffusive dissipation. Numerically, if the grid is

not fine enough, this balance needs to be restored by a turbu-

lence model. The success of a turbulence model depends on

the ability to capture well this (im)balance. In this regard,

many eddy-viscosity models for LES have been proposed in

the last decades (see [3], for a review). In order to be frame

invariant, most of them rely on differential operators that are

based on the combination of invariants of a symmetric second-

order tensor (with the proper scaling factors). To make them

locally dependent such tensors are derived from the gradient

Invariants

QG RG QS RS V 2 QΩ Z2

O(y2) O(y3) O(y0) O(y1) O(y0) O(y0) O(y2)

[T−2] [T−3] [T−2] [T−3] [T−4] [T−2] [T−4]

Models

Smagorinsky WALE Vreman’s RS -based σ-model

Eq.(6) Eq.(7) Eq.(7) Ref. [2] Ref. [1]

O(y0) O(y3) O(y1) O(y1) O(y3)

Table 1: Top: near-wall behavior and units of the five basic in-

variants in the 5D phase space given in (5) together with the

invariants QΩ = QG − QS and Z2 = V 2
− 2QSQΩ. Bottom:

near-wall behavior of the Smagorinsky, the WALE, the Vreman’s,

the RS-based and the σ-models.

of the resolved velocity field, G ≡ ∇u. This is a second-order

traceless tensor, tr(G) = ∇ · u = 0. Therefore, it contains 8

independent elements and it can be characterized by 5 invari-

ants (3 scalars are required to specify the orientation in 3D).

Following the same criterion as in [4], this set of five invariants

can be defined as follows

{QG, RG, QS , RS , V
2}, (5)

where QA = 1/2{tr2(A)−tr(A2)} and RA = det(A) represent

the second and third invariants of the second-order tensor A,

respectively. Moreover, the first invariant of A is denoted as

PA = tr(A). Finally, V 2 = tr(S2Ω2), where S = 1/2(G +

GT ) and Ω = 1/2(G −GT ) are the symmetric and the skew-

symmetric parts of the gradient tensor, G. Starting from the

classical Smagorinsky model [5] that reads

νSmag
e = (CSδ)

2|S(u)| = 2(CSδ)
2(−QS)

1/2, (6)

most of the eddy-viscosity models for LES are based on invari-

ants of second-order tensors that are derived from the gradient

tensor, G. Therefore, it seems natural to re-write them in

terms of the 5D phase space defined in (5). For instance, the

WALE [6] and the Vreman’s model [7] read

νWe = (CW δ)2
(2/3Q2

G + Z2)3/2

(−2QS)5/2 + (2/3Q2

G + Z2)5/4
, (7)

νV r
e = (CV rδ)

2

(

Q2

G + 4Z2

2(QΩ −QS)

)1/2

, (8)

respectively, where QΩ = QG −QS and Z2 = V 2 − 2QSQΩ.

Other eddy-viscosity models that can be re-written in terms

of the above-defined invariants are the model proposed by
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Figure 1: Solutions for the linear system of Eqs.(9) for s = 1

(dashed line) and s = 3 (solid line). Each (r, q, p) solution repre-

sents an eddy-viscosity model of the form given in Eq.(9).

Verstappen [2] and the σ-model proposed in [1]. The ma-

jor drawback of the Smagorinsky model is that the differential

operator it is based on does not vanish in near-wall regions

(see Table 1). It is possible to build models based on invari-

ants that do not have this limitation. Examples thereof are

the WALE, the Vreman’s, the Verstappen’s and the σ-model.

BUILDING NEW PROPER INVARIANTS FOR LES MODELS

At this point, it is interesting to observe that new models

can be derived by imposing restrictions on the differential op-

erators they are based on. For instance, let us consider models

that are based on the invariants of the tensor GGT

νe = (CM δ)2P p

GGT
Qq

GGT
Rr

GGT , (9)

where −6r− 4q − 2p = −1, 6r + 2q = s and PGGT = 2(QΩ −
QS), QGGT = Q2

G +4Z2 and RGGT = R2

G, respectively. The

above-defined restrictions on the exponents follow by imposing

the [T−1] units of the differential operator and the slope, s,

for the asymptotic near-wall behavior (see Table 1), i.e.O(ys).

Solutions for q(p, s) = (1− s)/2− p and r(p, s) = (2s− 1)/6+

p/3 are displayed in Figure 1. The Vreman’s model given in

Eq.(7) corresponds to the solution with s = 1 (see Table 1)

and r = 0. However, it seems more appropriate to look for

solutions with the proper near-wall behavior, i.e. s = 3 (solid

lines in Figure 1). Restricting to solutions involving only two

invariants of GGT we find three new models (see Figure 1),

νS3PQ
e = (Cs3pqδ)

2P
−5/2

GGT
Q

3/2

GGT
, (10)

νS3PR
e = (Cs3prδ)

2P−1

GGT
R

1/2

GGT
, (11)

νS3QR
e = (Cs3qrδ)

2Q−1

GGT
R

5/6

GGT
, (12)

where the model constants, Cs3xx, can be related with the

Vreman’s constant, CV r , with the following inequality

0 ≤ (CV r)
2

(Cs3xx)2
νS3xx
e

νV r
e

≤ 1

3
. (13)

Hence, imposing Cs3pq = Cs3pr = Cs3qr =
√
3CV r guaran-

tees both numerical stability and that the models have less or

equal dissipation than Vreman’s model, i.e.

0 ≤ νS3xx
e ≤ νV r

e . (14)

Figure 2 shows the performance of the proposed models for a

turbulent channel flow in conjunction with the discretization
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Figure 2: Results for a turbulent channel flow at Reτ = 395

obtained with a 323 mesh for LES and a 963 mesh without model,

i.e. νe = 0. Solid line corresponds to the DNS by Moser et al. [9].

methods for eddy-viscosity models proposed in [8]. Compared

with Vreman’s model, they improve the results near the wall.
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