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1 Introduction

We consider the simulation of the incompressible Navier-Stokes (NS) equations

∂tu+(u ·∇)u = ν∇
2u−∇p, ∇ ·u = 0, (1)

where u denotes the velocity field, p represents the kinematic pressure and ν is the

kinematic viscosity. In the foreseeable future, numerical simulations of turbulent

flows will have to resort to models of the small scales because the non-linear con-

vective term produces too many scales of motion. Large-Eddy Simulation (LES)

is probably the most popular example thereof. In short, LES equations result from

applying a spatial filter, with filter length ∆ , to the NS Eqs.(1)

∂tu+(u ·∇)u = ν∇
2u−∇p−∇ · τ(u), ∇ ·u = 0, (2)

where u is the filtered velocity and τ(u) is the subgrid stress (SGS) tensor and aims

to approximate the effect of the under-resolved scales, i.e. τ(u) ≈ u⊗u− u⊗ u. In

this regard, the eddy-viscosity assumption is by far the most used closure model

τ(u)≈−2νeS(u), (3)

where νe is the eddy-viscosity. Following [1], the it can be modeled as follows

νe = (Cm∆)2Dm(u), (4)
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Invariants

QG RG QS RS V 2 QΩ

O(y2) O(y3) O(y0) O(y1) O(y0) O(y0)
[T−2] [T−3] [T−2] [T−3] [T−4] [T−2]

Models

Smagorinsky WALE Vreman’s Verstappen’s σ -model

Eq.(6) Eq.(7) Eq.(7) Ref. [2] Ref. [1]

O(y0) O(y3) O(y1) O(y1) O(y3)

Table 1 Top: near-wall behavior and units of the five basic invariants in the 5D phase space given

in (5) together with the invariant QΩ = QG −QS. Bottom: near-wall behavior of the Smagorinsky,

the WALE, the Vreman’s, the Verstappen’s and the σ -model.

where ∆ is a subgrid characteristic length. Cm and Dm are the constant and differen-

tial operator associated with the model.

2 A 5D phase space for eddy-viscosity models

The essence of turbulence are the smallest scales of motion. They result from a sub-

tle balance between convective transport and diffusive dissipation. Numerically, if

the mesh is too coarse, this balance needs to be restored by a turbulence model.

Therefore, the performance of these models strongly depends on the ability to cap-

ture well this (im)balance. In this respect, many eddy-viscosity models for LES have

been proposed (see [3], for a review). In order to be frame invariant, most of them

rely on differential operators that are based on invariants of a symmetric second-

order tensor (with the proper scaling factors). Such tensors are usually derived from

the gradient of the resolved velocity field, G≡∇u; therefore, they are locally depen-

dent and Galilean invariant. This is a second-order traceless tensor, tr(G)=∇ ·u= 0.

Hence, it contains 8 independent elements and it can be characterized by 5 invari-

ants (3 scalars are required to specify the orientation in 3D). Following the same

notation as in [4], this set of invariants is given by

{QG,RG,QS,RS,V
2}, (5)

where QA = 1/2{tr2(A)− tr(A2)} and RA = det(A) are the second and third invari-

ants of the second-order tensor A. The first invariant of A is denoted as PA = tr(A).
Finally, V 2 = 4(tr(S2Ω 2)−2QSQΩ ), where S = 1/2(G+GT ) is the symmetric part

and Ω = 1/2(G−GT ) is the skew-symmetric part of the tensor G. Going back to

the Smagorinsky model [5]

ν
Smag
e = (CS∆)2|S(u)|= 2(CS∆)2(−QS)

1/2, (6)

almost all the eddy-viscosity models for LES are based on invariants of second-

order tensors derived from the gradient tensor, G. Hence, they can be re-write in
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Fig. 1 Solutions for the linear system of Eqs.(9) for s = 1 (dashed line) and s = 3 (solid line). Each

(r,q, p) solution represents an eddy-viscosity model of the form given in Eq.(9).

terms of the 5D phase space defined in (5). For example, the WALE [6] and the

Vreman’s model [7] read

ν
W
e = (CW ∆)2 (V 2/2+2Q2

G/3)3/2

(−2QS)
5/2+(V 2/2+2Q2

G/3)5/4 , (7)

ν
V r
e = (CV r∆)2

(

V 2+Q2
G

2(QΩ−QS)

)1/2

. (8)

respectively, where QΩ = QG −QS. Other eddy-viscosity models that can be re-

written in terms of the above-defined invariants are the σ -model proposed in [1]

and the model proposed by Verstappen [2]. The major drawback of the Smagorinsky

model is that the invariant QS (see Eq.6) does not vanish in near-wall regions (see

Table 1). Nevertheless, it is possible to build models that do not have this limitation:

the WALE, the Vreman’s, the Verstappen’s and the σ -model are examples thereof.

3 Building new proper invariants for LES models

In this context, it is interesting to observe that new models can be derived by im-

posing appropriate restrictions on the differential operator. For example, we can

consider models that are based on the invariants of the tensor GGT . Namely,

νe = (CM∆)2P
p

GGT Q
q

GGT Rr
GGT , (9)

where −6r−4q−2p =−1, 6r+2q = s and PGGT = 2(QΩ −QS), QGGT =V 2+Q2
G

and RGGT = R2
G, respectively. The GGT tensor appears in the leading term (gradient

model) of the Taylor series expansion of the SGS tensor τ(u) = (∆ 2/12)GGT +
O(∆ 4). The above-defined restrictions on the exponents follow by imposing the
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[T−1] units of the differential operator and the slope, s, for the asymptotic near-

wall behavior (see Table 1), i.e. O(ys). Solutions for q(p,s) = (1− s)/2− p and

r(p,s) = (2s−1)/6+ p/3 are displayed in Figure 1. The Vreman’s model given in

Eq.(7) corresponds to the solution with s = 1 (see Table 1) and r = 0. Nevertheless,

solutions with the proper near-wall behavior, i.e. s = 3 (solid lines in Figure 1)

seem more appropriate. Then, restricting ourselves to solutions involving only two

invariants of GGT we find three new eddy-viscosity models (see Figure 1),

ν
S3PQ
e = (Cs3pq∆)2P

−5/2

GGT Q
3/2

GGT , (10)

ν
S3PR
e = (Cs3pr∆)2P−1

GGT R
1/2

GGT , (11)

ν
S3QR
e = (Cs3qr∆)2Q−1

GGT R
5/6

GGT . (12)

Lower bounds for the model constants, Cs3xx, can be with found (see details in [8])

0 ≤ (CV r)
2

(Cs3xx)2

νS3xx
e

νV r
e

≤ 1

3
, (13)

where CV r is the Vreman’s constant. Hence, imposing Cs3pq = Cs3pr = Cs3qr =√
3CV r guarantees both numerical stability and that the models have less or equal

dissipation than Vreman’s model, i.e.

0 ≤ ν
S3xx
e ≤ ν

V r
e . (14)

4 Results

Figure 2 shows the performance of the proposed models for a turbulent channel

flow at Reτ = 395 together with the discretization methods for eddy-viscosity mod-

els proposed in [10]. The code is based on a fourth-order symmetry-preserving

discretization finite volume discretization. Results are in good agreement with the

DNS data [9]. To illustrate the contribution of the eddy-viscosity models to improve

the quality of the solution, the results obtained with a 963 mesh without model,

i.e. νe = 0, are also shown. The performance of the three models proposed here

(S3PQ, S3PR and S3QR) is essentially the same. Compared with the Vreman’s

model, they tend to improve the results for the mean velocity in the buffer layer re-

gion (5 < y+ < 30) whereas the quality of the solutions in the outer layer (y+ > 50)

is very similar. Although some discrepancies are observed, the root-mean-square of

the fluctuating velocity components (see Figure 2, bottom) are also in rather good

agreement with the DNS data. In this case, the proposed models outperform the

solution obtained with the Vreman’s model. The latter does not predict accurately

the position of the peak for urms, and clearly under-predict the solution for both

vrms and wrms. In this case, the solution obtained without model may seem accurate;

however, the clearly over-predicted friction velocity (if results were normalized by
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Fig. 2 Results for a turbulent channel flow at Reτ = 395 obtained with a 323 mesh for LES and a

963 mesh without model, i.e. νe = 0. Solid line corresponds to the DNS by Moser et al. [9]. Top: av-

erage stream-wise velocity, 〈u〉. Bottom: root-mean-square of the fluctuating velocity components

(from top to bottom, urms, wrms and vrms, respectively.)

the mean stream-wise velocity) compensates an over-prediction of the velocity fluc-

tuations. These results support the idea that the Vreman’s model tends to dissipate

too much in the near-wall region where the eddy-viscosity, νe, does not follow the

proper cubic behavior (see Table 1). To illustrate this, the average eddy-viscosity,

〈νe〉, divided by the kinematic viscosity, ν , is displayed in Figure 3. Results using

the classical Smagorinsky model are also shown for comparison. As expected, the

proposed models follow a cubic near-wall behavior whereas the Vreman’s model

predict much higher values in the buffer layer region (5 < y+ < 30). Our current re-

search is focused on finding a proper definition of the subgrid characteristic length,

∆ which is also a key element of any eddy-viscosity model (see Eq. 4). Preliminary

results in this regard can be found in [11].
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Fig. 3 Averaged eddy-viscosity, 〈νe〉, divided by the kinematic viscosity, ν . Results for a turbulent

channel flow at Reτ = 395 obtained with a 323 for different LES models.
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