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INTRODUCTION

Large-eddy simulation (LES) equations result from apply-

ing a spatial commutative filter, with filter length δ, to the

Navier-Stokes equations

∂tu+ (u · ∇)u = ν∇2
u−∇p−∇ · τ(u), ∇ · u = 0, (1)

where u is the filtered velocity and τ(u) is the subgrid stress

(SGS) tensor and aims to approximate the effect of the under-

resolved scales, i.e. τ(u) ≈ u⊗ u − u ⊗ u. Because of its

inherent simplicity and robustness, the eddy-viscosity assump-

tion is by far the most used closure model, τ(u) ≈ −2νeS(u).

Then, the eddy-viscosity, νe, is usually modeled as follows

νe = (Cmδ)2Dm(u). (2)

In the last decades most of the research has focused on either

the calculation of the model constant, Cm (e.g. the dynamic

modeling approach), or the development of more appropriate

model operators Dm(u) (e.g. WALE, Vreman’s, Verstappen’s,

σ-model, S3PQR [1],...). Surprisingly, little attention has been

paid on the computation of the subgrid characteristic length,

δ, which is also a key element of any eddy-viscosity model.

Despite the fact that in some situations it may provide very

inaccurate results, three and a half decades later, the approach

proposed by Deardorff [2], i.e., the cube root of the cell volume

(see Eq. 3), is by far the most widely used to computed the

subgrid characteristic length, δ. Its inherent simplicity and

applicability to unstructured meshes is probably a very good

explanation for that. Alternative methods to compute δ are

summarized and classified in Table 1 according to a list of

desirable properties for a (proper) definition of δ. Namely,

δvol = (∆x∆y∆z)1/3, δSco = f(a1, a2)δvol, (3)

δmax = max(∆x,∆y,∆z), δL2 =

√

∆x2 +∆y2 +∆z2

3
, (4)

δω =
√

(ω2
x∆y∆z + ω2

y∆x∆z + ω2
z∆x∆y)/|ω|2, (5)

δ̃ω = max
n,m=1,...,8

|ln − lm|√
3

, δSLA = δ̃ωFKH(V TM), (6)

where ω = (ωx, ωy , ωz) = ∇ × u is the vorticity and

f(a1, a2) = cosh
√

4/27[(ln a1)2 − ln a1 lna2 + (ln a2)2] (a1 =

∆x/∆z, a2 = ∆y/∆z, assuming that ∆x ≤ ∆z and ∆y ≤ ∆z)

is the correcting function proposed by Scotti [3]. The function

0 ≤ FKH(V TM) ≤ 1 has been recently proposed by Shur et

al. [4] to correct the δ̃ω definition proposed by Mockett et

al. [5], both in the context of Detached Eddy Simulation.

δvol δSco δmax δL2 δω δ̃ω δSLA δlsq
Ref. [2] [3] [6] [7] [5] [4]

Eq.3 Eq.3 Eq.4 Eq.4 Eq.5 Eq.6 Eq.6 Eq.10

P0 Yes Yes Yes Yes Yes Yes Yes Yes

P1 Yes Yes Yes Yes Yes Yes Yes Yes

P2 No No No No Yes Yes Yes Yes

P3 Yes No No No No* Yes Yes Yes

P4 +++ ++ ++++ +++ ++ + + +++

Table 1: Properties of different definition of the subgrid char-

acteristic length, δ. Namely, P0: δ ≥ 0, locality and frame

invariant; P1: boundedness, i.e., given a structured Cartesian

mesh where ∆x ≤ ∆y ≤ ∆z, ∆x ≤ δ ≤ ∆z; P2: sensitive to

flow orientation; P3: applicable to unstructured meshes; P4:

well-conditioned and low computational cost.

These properties are based on physical, numerical, and/or

practical arguments. This list is completed with the definition

of δlsq given in Eq.(10) and introduced in the next section. Ac-

cording to property P2, they can be classified into two main

families; namely, (i) definitions of δ that solely depend on

geometrical properties of the mesh, and (ii) definitions of δ

that are also dependent on the local flow topology. The lat-

ter is characterized by the gradient of the resolved velocity

field, G ≡ ∇u. On the other hand, the local mesh geometry

for a Cartesian grid is contained in the following second-order

diagonal tensor,

∆ ≡ diag(∆x,∆y,∆z). (7)

Hereafter, we take ∆x ≤ ∆y ≤ ∆z without loss of gener-

ality. Therefore, methods solely based on the geometrical

properties of the mesh are fully characterized by the tensor

∆. Apart from the geometric information contained in ∆, the

other methods are also dependent on the flow topology, G.

BUILDING A NEW SUBGRID CHARACTERISTIC LENGTH

The subgrid characteristic length, δ, appears in a natural

way when we consider the leading term of the Taylor series

expansion of the subgrid stress tensor,

τ(u) =
δ2

12
GG

T +O(δ4). (8)

This is the gradient model proposed by Clark et al. [9], where

in this case, δ denotes the filter length. On the other hand,

for anisotropic filter lengths, the Taylor expansion of τ gives

τ(u) =
1

12
GδG

T
δ +O(δ4), (9)
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Figure 1: Energy spectra for decaying isotropic turbu-

lence corresponding to the experiment of Comte-Bellot and

Corrsin [8]. Results obtained with the new definition δlsq pro-

posed in Eq.(10) are compared with the classical definition

proposed by Deardorff given in Eq.(3). For clarity, latter re-

sults are shifted one decade down.

where Gδ ≡ G∆. Minimizing the difference between the

leading term tensors of Eqs.(8) and (9), i.e. (δ2/12)GGT ≈
(1/12)GδG

T
δ using a least-squares minimization leads to

δlsq =

√

GδG
T
δ : GGT

GGT : GGT
. (10)

This definition of δ fulfills a set of desirable properties.

Namely, it is locally defined and well bounded, ∆x ≤ δlsq ≤
∆z; therefore it meets properties P0 and P1. Moreover, it is

sensitive to flow orientation (property P2) and applicable to

unstructured meshes (property P3). In this regard, for purely

rotating flows, i.e., S = 0 and G = Ω, δlsq reduces to

δlsq =

√

ω2
x(∆y2 +∆z2) + ω2

y(∆x2 +∆z2) + ω2
z(∆x2 +∆y2)

2|ω|2
,

(11)

which resembles the definition of δω given in Eq.(5) proposed

by Chauvet et al. [7]. Actually like the definition δω given in

Eq.(5) proposed by Mockett et al. [5] it is O(max{∆x,∆y})
instead of δω =

√
∆x∆y; therefore, it also avoids a strong

effect of the smallest grid spacing.

CONCLUSIONS AND PRELIMINARY RESULTS

In this work, a novel definition of subgrid characteristic

length, δ, is proposed with the aim to answer the following

research question: can we find a simple and robust defini-

tion of δ that minimizes the effect of mesh anisotropies on

the performance of SGS models? In this regard, we consider

the novel definition of δlsq proposed in Eq.(10) as a very good

candidate. Preliminary results displayed in Figure 1 corre-

spond to the classical experimental results obtained by Comte-

Bellot and Corrsin [8]. LES results have been obtained using

the Smagorinsky model, for a set of (artificially) stretched

meshes. Results for pancake-like meshes with 32 × 32 × Nz

and Nz = {32, 64, 128, 256, 512, 1024, 2048} are displayed in

Figure 1 (top): for increasing values of Nz the results ob-

tained using the Deardorff definition, given in Eq.(3), diverge.

This is because the value of δ tends to vanish and, therefore,

the subgrid-scale models switch off. This is not the case for

the definition of δ proposed in this work. Instead, results

rapidly converge for increasing values of Nz . A similar behav-

ior is observed in Figure 1 (bottom) for pencil-like meshes with

32×Nz×Nz and Nz = {32, 64, 128, 256, 512, 768}. Therefore,

the proposed definition of the subgrid characteristic length,

δlsq , seems to minimize the effect of mesh anisotropies on the

performance of subgrid-scale models. To test the performance

of the new definition of δ for wall-bounded flows (e.g. turbu-

lent channel flow), also for unstructured meshes, is part of our

research plans. Detailed results will be presented in the final

paper and in the conference.
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