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1 Introduction

Large-eddy simulation (LES) equations result from applying a spatial commutative

filter, with filter length ∆ , to the Navier-Stokes equations

∂tu+(u ·∇)u = ν∇2u−∇p−∇ · τ(u), ∇ ·u = 0, (1)

where u is the filtered velocity and τ(u) is the subgrid stress (SGS) tensor and aims

to approximate the effect of the under-resolved scales, i.e. τ(u) ≈ u⊗ u− u⊗ u.

Most of the difficulties in LES are associated with the presence of walls where SGS

activity tends to vanish. Therefore, apart from many other relevant properties, LES

models should properly capture this feature [1]. Numerically, this implies an accu-

rate resolution of the near-wall region which results on a high computational cost at

high Reynolds numbers. Accurate estimations of these costs, including the tempo-

ral scales, are given in the next section. They lead to the conclusion that, in the near

future, the feasibility of wall-resolved LES (WRLES) at high-Reynolds numbers

should rely on substantial cost reductions in the viscous wall region. This may be

achieved by decreasing the number of grid points using high-order schemes or/and

using larger time-steps (implicit-explicit time-integration?). Furthermore, it is also

concluded that the mesh anisotropy increases with the Reynolds numbers. This rep-

resents an additional challenge for WRLES. In this context, a novel definition of

subgrid characteristic length, ∆ , is proposed with the aim to answer the following

research question: can we find a simple and robust definition of ∆ that minimizes the

effect of mesh anisotropies on the performance of SGS models?
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2 Wall-resolved LES: computational costs and mesh anisotropies

In his 1979 pioneering paper, Chapman [2] estimated the number of grid points for

an LES of turbulent boundary layers with and without wall modeling as

Nwm ∼ Re
2/5
Lx

and Nwr ∼ Re
9/5
Lx

, (2)

respectively, where ReLx =ULx/ν is the Reynolds number based on the free-stream

velocity, U , and the flat plate length in the streamwise direction, Lx. To reach these

scalings, Chapman used the following skin friction correlation

c f = 0.045Re
−1/4

δ
, (3)

where Reδ =Uδ/ν is the Reynolds number based on the boundary layer thickness,

δ (x), and assumed a seventh-power velocity distribution law, i.e. u ∼ y1/7. The later

leads to an exact relation between the momemtum thickness, θ , and δ given by

θ = 7δ/72. Then, using Eq.(3) and c f = 2dθ/dx leads to

δ

x
= 0.37Re

−1/5
x and c f = 0.0577Re

−1/5
x , (4)

where Rex =Ux/ν is the Reynolds number based on the streamwise distance from

the leading edge, x. From these equations it is relatively easy to show the scaling

given by Chapman in Eq.(2). Recently, Choi and Moin [3] gave new estimations

based on a more accurate skin friction correlation for high Reynolds numbers (106 ≤
Rex ≤ 109) given by

c f = 0.020Re
−1/6

δ
. (5)

In this case, the analysis leads to

Nwm ∼ ReLx and Nwr ∼ Re
13/7
Lx

. (6)

These findings are extensively used to emphasize the prohibitive costs of LES with-

out wall-modeling and the necessity, in the foreseeable future, of wall-modeling

techniques for applications at high Reynolds numbers. However, under some as-

sumptions, these scalings are only valid for a range of Rex; moreover, they do not

include the costs associated with temporal scales which eventually can be even more

restrictive due to the inherent difficulty (impossibility?) to parallelize LES equations

in time. These two issues are addressed in the next paragraphs. Let us consider a

general power-law for the skin friction coefficient

c f = aRe
β
δ . (7)

Then, following the above explained reasonings it leads to

δ

x
= bReα

x and c f = 7b/36(α + 1)Reα
x , (8)
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where b = (36a(1−β )/7)1/(1−β ) and α = β/(1−β ). Notice that with a = 0.045

and β = −1/4 it leads to the Chapman’s scalings given in Eqs.(4). Following the

same reasonings as in Ref.[3] the number of grid points in the outer layer and the

viscous wall region can be estimated as follows

Nout = nxnynz

(

1

b2(1+ 2α)

)

Lz

Lx

Re−2α
Lx

(

(

ReLx

Rex0

)1+2α

− 1

)

, (9)

Nvis =
nw

y

∆x+w ∆z+w

7b

72

Lz

Lx

Re2+α
Lx

(

1−
(

Rex0

ReLx

)1+α
)

, (10)

where nxnynz is the number of grid points to resolve the cubic volume δ 3(x) in

the outer layer (typically in the range 103 − 104 [3]), Lz is the spanwise length and

x0 is the initial streamwise location where the skin friction correlation (8) holds.

Then, ∆x+w , ∆z+w and nw
y are respectively the grid resolutions (in wall units) and

the number of grid points in the wall-normal direction in the viscous wall region,

i.e. 0≤ y+ . l+y ≈ 100. Typical values for WRLES lead to nw
y /(∆x+w ∆z+w )∼ 0.01 [3].

This analysis can be extended giving estimations of the number of time-steps for the

outer layer and the viscous wall region

Nout
t =

NTU nx

bCconv

ReLxRe
−(1+α)
x0

; Nvis
t = max(Nvis

tdi f f
,Nvis

tconv
), (11)

where

Nvis
tdi f f

=
NTU

Cdi f f

7b

72

α + 1

(∆y+w )2
ReLxReα

x0
; Nvis

tconv
=

NTU

Cconv

√

7b

72

α + 1

(∆x+w )2
ReLxRe

α/2
x0

,

(12)

where NTU is the number of time-units, Lx/U , to be computed; Cconv and Cdi f f are

the convective and diffusive constants in the CFL condition. In summary, combining

Eqs.(9), (10) and (11) leads to the following costs for LES with and without wall-

modeling:

Nwm
t Nwm ∼ Re2

Lx
and Nwr

t Nwr ∼ Re3+α
Lx

. (13)

Nowadays, this represents the main limitation of (wall-resolved) LES. On the other

hand, it is also possible to give estimations of the mesh anisotropy, i.e. ∆x/∆y, in the

boundary layer. Namely, in the viscous sublayer, max(∆x/∆y) = ∆x+w/∆y+w ≈ 50−
100 is not expected to change with the Reynolds number. However, in the overlap

region (y+ & 50, y/δ < 0.1) where control volumes of the viscous wall region and

the outer layer (y+ & 50) must be smoothly connected, the grid anisotropy can be

estimated as
(

∆x

∆y

)

overlap

≈ (∆x)out

(∆y)vis

=
δ

nx

nw
y

ly
, (14)

where ly is the size of the viscous wall region, i.e. l+y = uτ ly/ν ≈ 50− 100. Recall-

ing the definition of the skin friction coefficient, c f = τw/(ρU2/2), and using the
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relation given in Eq.(8), an expression in terms of Rex can be obtained

(

∆x

∆y

)

overlap

≈ 1√
2

nw
y

nx

b

l+y

√

7b

36
(α + 1)Re

1+3α/2
x . (15)

Therefore, for any value of α > −2/3 the mesh anisotropy, ∆x/∆y, tends to grow

with Rex. Taking typical values for nx = 10, nw
y = 20 and l+y = 100, and using,

respectively, the skin friction coefficient correlations used by Chapman [2], i.e. α =
−1/5 and b= 0.37, and Choi and Moin [3], i.e. α =−1/7 and b= 0.17, it simplifies

(

∆x

∆y

)Chapman

overlap

≈ 0.00125Re
7/10
x ;

(

∆x

∆y

)Choi&Moin

overlap

≈ 4.047×10−4Re
11/14
x . (16)

Just as examples, this leads to mesh anisotropies of 19.9 and 20.96 at Rex = 106, and

99.7 and 127.97 at Rex = 107. Therefore, numerical techniques that behave robustly

in such meshes are of great interest. In this context, a new definition of the subgrid

characteristic length in presented and tested in the next section.

3 A new definition of the subgrid characteristic length

Because of its inherent simplicity and robustness, the eddy-viscosity assumption,

τ(u) ≈ −2νeS(u), is by far the most used closure model for LES equations (1).

Then, the eddy-viscosity, νe, is usually modeled as follows

νe = (Cm∆)2Dm(u). (17)

In the last decades most of the research has focused on either the calculation of the

model constant, Cm (e.g. the dynamic modeling approach), or the development of

more appropriate model operators Dm(u) (e.g. WALE [4], Vreman’s [5], Verstap-

pen’s [6], σ -model [7], S3PQR [1],...). Surprisingly, little attention has been paid on

the computation of the subgrid characteristic length, ∆ , which is also a key element

of any eddy-viscosity model. Despite the fact that in some situations it may pro-

vide very inaccurate results, three and a half decades later, the approach proposed

by Deardorff [8], i.e., the cube root of the cell volume (see Eq. 20), is by far the

most widely used to computed the subgrid characteristic length, ∆ . Its inherent sim-

plicity and applicability to unstructured meshes is probably a very good explanation

for that. With the aim to overcome the limitations of the Deardorff definition, the

following definition is proposed

∆lsq =

√

G∆G
T
∆ : GGT

GGT : GGT
, (18)
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Fig. 1 Energy spectra for decaying isotropic turbulence corresponding to the experiment of Comte-

Bellot and Corrsin [9]. Results obtained with the new definition ∆lsq proposed in Eq.(18) are com-

pared with the classical definition proposed by Deardorff given in Eq.(20). For clarity, latter results

are shifted one decade down.

where G ≡ ∇u, G∆ ≡ G∆ and ∆ ≡ diag(∆x,∆y,∆z) (for a Cartesian grid). This

definition of ∆ fulfills a set of desirable properties. Namely, it is locally defined

and well bounded, ∆x ≤ ∆lsq ≤ ∆z (assuming that ∆x ≤ ∆y ≤ ∆z). Moreover, it

is sensitive to flow orientation and applicable to unstructured meshes (by simply

replacing the tensor ∆ by the Jacobian of the mapping from the physical to the

computational space). This definition (18) is obtained minimizing (in a least-squares

sense) the difference between the leading terms of the Taylor series of the SGS

tensor, τ(u), for an isotropic and an anisotropic filters lengths; namely,

τ(u) =
∆ 2

12
GG

T +O(∆ 4) ; τ(u) =
1

12
G∆G

T
∆ +O(∆ 4), (19)

Results displayed in Figure 1 correspond to the classical experimental results

obtained by Comte-Bellot and Corrsin [9]. LES results have been obtained us-

ing the Smagorinsky model, for a set of (artificially) stretched meshes. Regarding

the spatial discretization of the eddy-viscosity models, the approach proposed in

Ref. [10] has been used. Results for pancake-like meshes with 32× 32×Nz and

Nz = {32,64,128,256,512,1024,2048} are displayed in Figure 1 (top): for increas-

ing values of Nz the results obtained using the Deardorff definition, given in

∆vol = (∆x∆y∆z)1/3, (20)

diverge. This is because the value of ∆ tends to vanish and, therefore, the subgrid-

scale models switch off. This is not the case for the definition of ∆ proposed in

this work. Instead, results rapidly converge for increasing values of Nz. A similar

behavior is observed in Figure 1 (bottom) for pencil-like meshes with 32×Nz ×
Nz and Nz = {32,64,128,256,512,768}. Therefore, the proposed definition of the

subgrid characteristic length, ∆lsq, seems to minimize the effect of mesh anisotropies

on the performance of subgrid-scale models.
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4 Concluding remarks

Estimations of the computational costs for LES with and without wall modeling

were originally given by Chapman [2], and more recently, by Choi and Moin [3].

Here, these estimations have been extended by the general power-law of the skin

friction coefficient given in Eq.(7), including the temporal scales. Furthermore, it

has been found that the mesh anisotropy in the overlap region increases with the

Reynolds number (see Eq.15). This represents an additional challenge for LES. In

this context, a novel definition of subgrid characteristic length, ∆ , is proposed with

the aim to answer the following research question: can we find a simple and robust

definition of ∆ that minimizes the effect of mesh anisotropies on the performance

of SGS models? In this regard, we consider the novel definition of ∆lsq proposed in

Eq.(18) as a very good candidate. Results for decaying isotropic turbulence show

that the proposed definition of ∆ seems to minimize the effect of mesh anisotropies

on the performance of subgrid scale models.
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