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1 Introduction

In this work, we plan to shed light on the following research question: can we find

a nonlinear subgrid-scale (SGS) heat flux model with good physical and numerical

properties, such that we can obtain satisfactory predictions for buoyancy driven

turbulent flows? This is motivated by our findings showing that the classical (linear)

eddy-diffusivity assumption fails to provide a reasonable approximation for the SGS

heat flux. This was shown in our work [1] where SGS features have been studied a

priori for a Rayleigh-Bénard convection (RBC). We also concluded that nonlinear

(or tensorial) models can give good approximations of the actual SGS heat flux.

Briefly, the large-eddy simulation (LES) equations arise from applying a spatial

commutative filter, with filter length δ , to the incompressible Navier-Stokes and

thermal energy equations,

∂tu+(u ·∇)u = (Pr/Ra)1/2 ∇2u−∇p+ f −∇ · τ, (1)

∂tT +(u ·∇)T = (Ra/Pr)−1/2∇2T −∇ ·q, (2)

where u, T and p are respectively the filtered velocity, temperature and pressure,

and the incompressibility constraint reads ∇ · u = 0. The SGS stress tensor, τ =
u⊗ u− u⊗ u, and the SGS heat flux vector, q = uT − uT , represent the effect of
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Fig. 1 Joint probability distribution functions (PDF) of the angles (α ,β ) plotted on a half unit

sphere to show the orientation in the space of the mixed model. From left to right, alignment

trends of the actual SGS heat flux, q, the Daly and Harlow [4] model (Eq. 6) and the Peng and

Davidson [5] model (Eq. 5). For simplicity, the JPDF and the PDF magnitudes are normalized by

its maximal. For details the reader is referred to [1].

the unresolved scales, and they need to be modeled in order to close the system.

The most popular approach is the eddy-viscosity assumption, where the SGS stress

tensor is assumed to be aligned with the local rate-of-strain tensor, S = 1/2(∇u+
∇ut), i.e. τ ≈−2νeS(u). By analogy, the SGS heat flux, q, is usually approximated

using the gradient-diffusion hypothesis (linear modeling), given by

q ≈−κt∇T (≡ qeddy). (3)

Then, the Reynolds analogy assumption is applied to evaluate the eddy-diffusivity,

κt , via a constant turbulent Prandtl number, Prt , i.e. κt = νe/Prt . These assumptions

have been shown to be erroneous to provide accurate predictions of the SGS heat

flux [1]. Namely, a priori analysis showed that the eddy-diffusivity assumption,

qeddy (Eq. 3), is completely misaligned with the actual subgrid heat flux, q (see

Figure 1, left). In contrast, the tensor diffusivity (nonlinear) Leonard model [2],

which is obtained by taking the leading term of the Taylor series expansion of q,

q ≈
δ 2

12
G∇T (≡ qnl), (4)

provides a much more accurate a priori representation of q (see Figure 1, left). Here,

G≡∇u represents the gradient of the resolved velocity field. It can be argued that the

rotational geometries are prevalent in the bulk region over the strain slots, i.e. |Ω|>
|S| (see Refs [1, 3]). Then, the dominant anti-symmetric tensor, Ω = 1/2(G−GT ),
rotates the thermal gradient vector, ∇T , to be almost perpendicular to qnl (see Eq.4).

Therefore, the eddy-diffusivity paradigm is only supported in the not-so-frequent

strain-dominated areas.
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2 Nonlinear SGS heat flux models for large-eddy simulation

Since the eddy-diffusivity, qeddy, cannot provide an accurate representation of the

SGS heat flux, we turn our attention to nonlinear models. As mentioned above, the

Leonard model [2] given in Eq.(4) can provide a very accurate a priori representa-

tion of the SGS heat flux (see Figure 1, left). However, the local dissipation (in the

L2-norm sense) is proportional to ∇T ·G∇T = ∇T ·S∇T +∇T ·Ω∇T = ∇T ·S∇T .

Since the velocity field is divergence-free, λ S

1 +λ S

2 +λ S

3 = ∇ ·u = 0, the eigenval-

ues of S can be ordered λ S

1 > λ S

2 > λ S

3 with λ S

1 > 0 (extensive eigendirection) and

λ S

3 6 0 (compressive eigendirection), and λ S

2 is either positive or negative. Hence,

the local dissipation introduced by the model can take negative values; therefore,

the Leonard model cannot be used as a standalone SGS heat flux model, since it can

produce a finite-time blow-up. A similar problem is encountered with the nonlinear

tensorial model qPD proposed by Peng and Davidson [5],

q ≈Ctδ
2
S∇T (≡ qPD), (5)

q ≈−TSGSτ∇T =−
1

|S|

δ 2

12
GG

T ∇T (≡ qDH), (6)

whereas the nonlinear model qDH proposed by Daly and Harlow [4] relies on the

positive semi-definite tensor GGT . Here, TSGS = 1/|S| is the SGS timescale. No-

tice that the model proposed by Peng and Davidson, qPD, can be viewed in the

same framework if the SGS stress tensor is estimated by an eddy-viscosity model,

i.e. τ ≈ −2νeS and TSGS ∝ δ 2/νe. These two models have shown a much better

a priori alignment with the actual SGS heat flux, especially the DH model (see

Figure 1, middle). Moreover, the DH is numerically stable since the tensor GGT

is positive semi-definite. Hence, it seems appropriate to build models based on

this tensor. However, the DH model does not have the proper near-wall behavior,

i.e. q ∝ 〈v′T ′〉 = O(y3) where y is the distance to the wall. An analysis of the DH

model leads to GGT ∇T ∝ O(y1). Therefore, the near-wall cubic behavior is recov-

ered if TSGS ∝ O(y2). This is not the case of the timescale used in the Daly and

Harlow [4] model, i.e. TSGS = 1/|S|= O(y0).
At this point it is interesting to observe that new timescales, TSGS, can be derived

by imposing restrictions on the differential operators they are based on. For instance,

let us consider models that are based on the invariants of the tensor GGT

q ≈−CM

(

P
p

GGT Q
q

GGT Rr
GGT

) δ 2

12
GG

T ∇T (≡ qS2) (7)

where PGGT , QGGT and RGGT are the first, second and third invariant of the GGT ten-

sor. This tensor is proportional to the gradient model [6] given by the leading term

of the Taylor series expansion of the subgrid stress tensor τ(u) = (δ 2/12)GGT +
O(δ 4). Then, the exponents p, q and r in Eq.(7), must satisfy the following equa-

tions

−6r− 4q− 2p= 1; 6r+ 2q = s, (8)
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Fig. 2 Solutions of the linear system of Eq.(8) for s = 0 (red lines) and s = 2 (blue lines). Each

(r, p,q) represents an tensor-diffusivity model with the form of Eq.(7).
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Fig. 3 Joint PDF for the S2PR model (Eq. 10) in the space (|qPD|/|qnl |,β ) where the angle β is

defined in Figure 1. The analyzed data corresponds to the bulk region of the air-filled Rayleigh-

Bénard configuration at Ra = 1010 studied in Refs. [3, 1].

to guarantee that the differential operator has units of time, i.e. [Pp

GGT Q
q

GGT Rr
GGT ] =

[T 1] and a slope s for the asymptotic near-wall behavior, i.e. O(ys). Solutions for

q(p,s) = −(1+ s)/2− p and r(p,s) = (2s+ 1)/6+ p/3 are displayed in Figure 2.

If we restrict ourselves to solutions with the proper near-wall scaling, i.e. s = 2 (blue

lines in Figure 2), a family of p-dependent models follows. Restricting ourselves to

solutions involving only two invariants of GGT three models follow
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Fig. 4 An instantaneous picture of the temperature field (left) and velocity magnitude (right), |u|,
of the DNS simulation of RBC at Ra = 7.14× 107 and Pr = 0.005 (liquid sodium) carried out

using a mesh of 966×966×2048 ≈ 1911M grid points.
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Fig. 5 Comparison of LES (and no-model) versus DNS results of RBC at Ra = 7.14× 106 and

Pr = 0.005 (liquid sodium). LES results have been obtained using the eddy-viscosity model S3PQ

proposed in Ref. [7]. Left: average Nusselt for different meshes. Right: turbulent kinetic energy at

cavity mid-width for a 96×52×52 mesh compared with the DNS results obtained with a mesh of

488×488×1280 ≈ 305M.

qS2PQ =−Cs2pqP
−5/2

GGT Q
GGT

δ 2

12
GG

T ∇T , (9)

qS2PR =−Cs2prP
−3/2

GGT R
1/3

GGT

δ 2

12
GG

T ∇T , (10)

qS2QR =−Cs2qrQ
3/2

GGT R
5/6

GGT

δ 2

12
GG

T ∇T , (11)

for p = −5/2, p = −1.5 and p = 0, respectively. These three solutions are repre-

sented in Figure 2. Apart from being unconditionally stable, these models display

very good a priori alignment trends in the bulk (see Figure 3) similar to the PD

model (see Figure 1, middle) but also in the near-wall region. Hence, we consider

that they are very good candidates for a posteriori LES simulations of buoyancy-

driven flows.
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3 Assessment of eddy-viscosity models at very low Pr numbers

At this stage, a posteriori results are necessary to assess the performance of the

newly proposed SGS heat flux models. However, apart from the underlying numer-

ics, such results will be strongly influenced by the SGS stress tensor model. Hence,

we first aim to answer the following research question: are eddy-viscosity models

for momentum able to provide satisfactory results for turbulent Rayleigh-Bénard

convection? In order to shed light to this, a set of simulations at Pr = 0.005 (liquid

sodium) have been carried out at Ra= 7.14×106 and Ra= 7.14×107. Figure 4 dis-

plays a snapshot of the temperature and velocity magnitude for the DNS simulation

at the highest Ra. This clearly illustrates the separation between the smallest scales

of temperature and velocity, i.e. the ratio between the Kolmogorov length scale and

the Obukhov-Corrsin length scale is given by Pr1/2 [8]. Therefore, for a Pr = 0.005

(liquid sodium) we have a separation of more than one decade. Hence, it is possible

to combine a LES simulation for the velocity field with the numerical resolution of

all the relevant scales of the thermal field. Regarding this, results shown in Figure 5

seem to confirm the adequacy of eddy-viscosity models for this kind of flows. Our

future research plans include the extension of this analysis to higher Ra-numbers

and testing a posteriori the new non-linear SGS heat flux models for air-filled RBC.
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