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INTRODUCTION

CFD codes that are used for industrial applications com-

monly use a collocated grid arrangement to calculate the phys-

ical flow variables. The main advantages of this arrangement,

in comparison to the staggered one, are the possibility to ex-

tend the solution domain to more complex geometries and a

more efficient data structure, which are both of great impor-

tance in industry. When using a central differencing scheme to

discretise the continuous operators of the Navier-Stokes equa-

tions, a wide stencil is obtained for the Laplacian operator.

This wide stencil, in turn, leads to a decoupling between odd

and even grid points of the pressure field that results from the

pressure Poisson equation. This decoupling can lead to non-

physical, spurious modes in the solution, a problem commonly

known as the checkerboard problem [1].

Generally, this problem is avoided by using a compact sten-

cil Laplacian. A method to do so was first developed by Rhie

and Chow [2]. This method solves the problem of decoupled

grid points and eliminates the possibility of spurious modes in

the pressure field. However, this method introduces nonphys-

ical, numerical dissipation of kinetic energy [2, 3]. This dis-

sipation disrupts the delicate interaction between convective

transport and physical dissipation, especially at the smallest

scales of motion. By doing so, it becomes impossible to cap-

ture the essence of turbulence, which is of high importance in

accurate LES and DNS simulations [4].

Many commercial codes favour the extra stability that this

method offers at the price of a lower accuracy. Unconditional

stability, however, can also be achieved by mimicking the

underlying symmetry properties of the continuous operators

of the Navier-Stokes equations, when discretising them. A

method that does this was developed for staggered Cartesian

grid arrangements by Verstappen and Veldman [4] and later

extended to collocated unstructured grids by Trias et al. [5].

Since the kinetic energy is conserved and stability is uncondi-

tional, using the method of Rhie and Chow comes at a higher

price and an alternative method should be sought after. One

method mentioned here is the one described by Larsson and

Iaccarino [6], in which the kernel of the discrete Laplacian op-

erator matrix is determined and used to eliminate the spurious

modes. However, on non-Cartesian grids, this method involves

performing a singular value decomposition (SVD), for which

the computational cost grows exponentially with the number

of grid points, as O(N3
grid), making this method nonviable for

industrial applications [7].

In this work a conservative solution to the checkerboard

problem will be examined by looking at the relation between

the connectivity of the mesh and the kernel of the discrete

Laplacian operator matrix. By understanding this relation

better, a prediction can be made for a set of vectors that span

the nullspace, and by projecting the pressure solution field

onto this nullspace, the spurious modes can be eliminated.

The relation between the mesh and the kernel will first be

examined, after which a method is developed to predict and

remove spurious modes, this method is then tested and com-

pared to the conventional Rhie-Chow interpolation method.

The new method could prove to be especially useful in the

field of magnetohydrodynamics, where a second Poisson equa-

tion for the electric potential has to be solved and stability

and conservative properties are important to accurately bal-

ance high opposing forces.

RELATION BETWEEN THE MESH AND THE KERNEL

Let the discrete wide stencil Laplacian operator be denoted

by Lc = MΓcsΓscG, which follows the discretisation of Trias

et al. [5] and is a chain operations: (1) face gradient, (2)

face-to-cell interpolation, (3) cell-to-face interpolation and (4)

divergence. The first thing to note is that the gradient at cell

i is given by:
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because the sum of outward pointing face area vectors always

equals 0:
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Therefore, the value in the central cell i does not contribute

to the gradient in the central cell itself. Similarly, the cell-

centered divergence at cell i is given by:
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Again, the value in the central cell i does not contribute to the

divergence in the central cell itself. Lc is a sequence of both

operators and will therefore only potentially connect cell i to

cell k, if they share a neighbour j:

[Lc]i,k =
∑
j
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(
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)
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If we use Aj,inj,i = −
∑

k ̸=i Aj,knj,k, then we can verify that

Lc should be negative-definite symmetrical, with columns and

rows summing to 0:
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Figure 1: 2 disconnected cell groups in a regular triangular

mesh (left) and 2dim = 4 in a Cartesian mesh (right)

Now we can predict from equation (4) that an extra vec-

tor, in addition to the constant vector, is needed to span the

nullspace of Lc, if an odd-even parity can be established in

the mesh, as seen in figure 1. In the special case that the dot

product in (4) equals zero due to orthogonal faces, there will

not be any connection. Therefore, in Cartesian meshes, no di-

agonal connections exist and the number of disconnected cell

groups will equal 2dim, as will the rank of the nullspace of Lc.

(a) Conventional (b) Lc structure

(c) Deliberate (d) Block diagonalised

Figure 2: Representation of Laplacian matrix entries for a

Cartesian 6× 6 mesh, with cyclic boundaries

The disconnected groups can also be visualised with a block

diagonalisation of the Laplacian matrix. When using conven-

tional cell numbering, as seen in figure 2a, the disconnection is

not immediately apparent from the matrix in figure 2b. When

renumbering the cells deliberately, as done in figure 2c, the

separation is evident from the block diagonal matrix, figure

2d. This block diagonalisation is not possible for the compact

Laplacian. One final way to express this relation, in terms

of graph connectivity, is that the rank of the nullspace equals

the number of connected components in the graph Laplacian,

which is constructed using mesh connectivity. Since the con-

nectivity can be derived from the mesh and is tied to the kernel

of Lc, the spurious modes can be removed from the solution

while avoiding the high cost of the SVD.

COMPUTATIONAL VERIFICATION

A solver is developed with symmetry-preserving discretisa-

tion of the continuous operators [5], with optionally compact

or wide stencil Laplacian in the pressure Poisson equation.

A priori a set of nullspace spanning vectors will be predicted

from the mesh connectivity, so that spurious modes can be re-

moved in calculating the pressure field. A Taylor-Green vortex

and a turbulent channel flow, figure 3, will be used to verify

the method, by monitoring evolution of kinetic energy and the

presence of spurious modes. It is expected that the compact

stencil Laplacian will show numerical dissipation and that the

wide stencil Laplacian will show checkerboarding, whereas the

new approach solves both problems.

Figure 3: Channel flow with checkerboarding
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