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1 Introduction

CFD codes that are used for industrial applications commonly use a collocated grid
arrangement to calculate the physical flow variables. When using a central differ-
encing gradient (CDG) to discretise the continuous operators of the Navier-Stokes
equations, a wide stencil is obtained for the Laplacian operator. This wide stencil,
in turn, leads to a decoupling between odd and even grid points of the pressure
field that results from the pressure Poisson equation. This decoupling can lead to
non-physical, spurious modes in the solution, a problem commonly known as the
checkerboard problem [Ferziger et al., 2002].

Generally, this problem is avoided by using a compact stencil Laplacian. A
method to do so was first developed by Rhie and Chow [Rhie and Chow, 1983]. This
method solves the problem of decoupled grid points and eliminates the possibility of
spurious modes in the pressure field. However, this method introduces nonphysical,
numerical dissipation of kinetic energy [Rhie and Chow, 1983, Felten and Lund, 2006].
This dissipation disrupts the delicate interaction between convective transport and
physical dissipation, especially at the smallest scales of motion. By doing so, it be-
comes impossible to capture the essence of turbulence, which is of high importance
in accurate DNS simulations [Verstappen and Veldman, 2003]. Moreover, for LES
simulations this dissipation was shown to be of the same order of magnitude as the
dissipation introduced by the LES model, decreasing the effectiveness of the model
[Komen et al., 2021].

Many general purpose codes favour the extra stability that this method offers at
the price of a lower accuracy. Unconditional stability, however, can also be achieved
by mimicking the underlying symmetry properties of the continuous operators of
the Navier-Stokes equations, when discretising them. A method that does this was
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developed for staggered Cartesian grid arrangements by Verstappen and Veldman
[Verstappen and Veldman, 2003] and later extended to collocated unstructured grids
by Trias et al. [Trias et al., 2014]. Since the kinetic energy is conserved and stability
is unconditional, using the method of Rhie and Chow comes at a higher price and
an alternative method should be sought after. One method mentioned here is the one
described by Larsson and Iaccarino [Larsson and Iaccarino, 2010], in which the ker-
nel of the discrete Laplacian operator matrix is determined and used to eliminate the
spurious modes. However, on non-Cartesian grids, this method involves performing
a singular value decomposition (SVD), for which the computational cost grows ex-
ponentially with the number of grid points, as O(N3

grid), making this method non-
viable for industrial applications [Golub and Van Loan, 1996].

In this work, properties of the discrete wide stencil Laplacian, its kernel and the
relation to the connectivity of the mesh will be examined. By understanding this
relation better, a prediction can be made for a set of vectors that span the nullspace,
and by projecting the pressure solution field onto this nullspace, the spurious modes
can be eliminated.

2 Relation between the mesh and the kernel

The greatest advantage of the collocated grid formulation is the possibility to extend
the solution domain to complex geometries using unstructured meshes. Therefore,
the continuous operators will be discretised in a manner that is suitable for un-
structured meshes. For these meshes, however, a central node will not necessarily
lie between two neighbouring nodes and therefore the CDG is not defined. Here,
a discretisation is used that simplifies to the CDG on uniform Cartesian meshes.
Moreover, it mimics the property of CDG that gradients at a central node i only
depend on values of neighbouring nodes n, i.e.:

[∇φ ]i = ∑
n

cnφn (1)

where cn is some coefficient.
Let the discrete wide stencil Laplacian operator be denoted by Lc = MΓ M

cs Γ M
sc G,

which follows the discretisation of Trias et al. [Trias et al., 2014] and is a chain of
operations: (1) face gradient G, (2) midpoint face-to-cell interpolation Γ M

sc , (3) mid-
point cell-to-face interpolation Γ M

cs and (4) divergence M. The cell-centered gradient
at node i is given by:

[
Γ

M
sc Gφc

]
i =

1
2 [Ωc]i

∑
f∈Ff (i)

[Ωs] f
φn −φi

δn f
ni f

=
1

2 [Ωc]i
∑

f∈Ff (i)
A f φnni f (2)
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where ni f is the outward-pointing face-normal vector of face f w.r.t. node i, δn f is
the face-normal distance between neighbouring nodes, Ωs denotes the face volumes,
where [Ωs] f = δn f A f with face area A f , Ωc denotes the cell volumes and finally
∑ f∈Ff (i) denotes a sum over the faces f that constitute cell i. The second line of
equation 2 follows from the fact that φi can be taken out of the summation and the
sum of outward-pointing surface normal vectors, Si f = A f ni f , equals zero:

∑
f∈Ff (i)

Si f = 0 (3)

Therefore, the value in the central node i does not contribute to the gradient in the
central node itself and equation 1 holds. Similarly, the cell-centered divergence at
node i is given by:

[MΓcsψc]i =
1
2 ∑

f∈Ff (i)
(ψi +ψn) ·ni f A f

=
1
2 ∑

f∈Ff (i)
ψn ·ni f A f (4)

Again, the value in the central node i does not contribute to the divergence in the
central node itself. Lc is a sequence of both operators connecting nodes i to k if they
share a neighbour j, its entries are given by:

[Lc]i,k = ∑
j

1
4 [Ωc] j

Si j ·S jk (5)

where Si j is the surface-normal vector, pointing from node i to j. This implies that
the Laplacian in node i does not depend on the values in its neighbours j, only on
its second neighbours k.

On certain meshes, this can create checkerboard-like patterns. Non-trivial pres-
sure modes can exist on these meshes of which the Laplacian equals zero, i.e. the
pressure modes given by a vector in the nullspace of Lc. Several examples of two-
dimensional meshes are shown in figure 1, in which cells are coloured the same
way if they are connected with non-zero entries in Lc, given by equation 5. Meshes
in which the number of faces that meet each other is always even, figure 1(left),
show a parity. In this example the nullity of Lc is increased to 2. In the case of
Cartesian meshes, figure 1(middle), the dot product in 5 equals zero for diagonal
second neighbour pairs, giving rise to a nullity of Lc of 2Ndim , which equals 4 in
the two-dimensional example. Finally, meshes in which an uneven number of non-
orthogonal faces meet each other, figure 1(right), the disconnection vanishes and the
nullity of Lc reduces, in this example to 1.

For the current definition of Lc, the nullity can simply be seen from the connected
groups in the mesh. In practice, a nullity higher than 1 will mostly occur in Cartesian
meshes, therefore other mesh types are disregarded for now. What remains is to
define a set of vectors that span the nullspace of Lc for Cartesian meshes.
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Fig. 1 Several mesh structures showing mesh connectivity. Triangular with parity (left), Cartesian
(middle), triangular without parity (right)

To do so, the pressure field pc is decomposed into its physical modes, p⊕
c , and

the non-physical modes, p⊖
c , which lie in the nullspace of Lc: pc = p⊕

c +p⊖
c , such

that Lcpc = Lcp⊕
c , because Lcp⊖

c = 0c. Any p⊖
c will then be a linear combina-

tion of nullspace spanning vectors. For Cartesian meshes, such a set was given by
[Larsson and Iaccarino, 2010], in the two-dimensional example this set is visualised
in figure 2 and given by:

[p⊖(1)
c ]i, j = 1, [p⊖(2)

c ]i, j = (−1)i, [p⊖(3)
c ]i, j = (−1) j, [p⊖(4)

c ]i, j = (−1)i+ j (6)

Fig. 2 Visualisation of a set of vectors spanning the nullspace of Lc

The kernel of Lc only depends on the mesh and the choice of interpolator. There-
fore, all that remains is to generalise the set of equation 6 to other types of interpo-
lators. Definitions of the most commonly used interpolators, linear and volumetric,
are given by:

[
Γ

L
cs φ

]
f =

δn f ,n

δn f
φi +

δn f ,i

δn f
φn,

[
Γ

V
cs φ

]
f =

δn f ,i

δn f
φi +

δn f ,n

δn f
φn (7)

respectively. Where δn f ,i and δn f ,n are the perpendicular distances between face f
and centroids i and n respectively, so that:

δn f = δn f ,i +δn f ,n (8)

Now it is important to note that, in the symmetry preserving framework, the cell-to-
face and face-to-cell interpolators are related to each other by [Trias et al., 2014]:

Γsc = Ω
−1

Γ
T

cs Ωs (9)

This leaves only one degree of freedom in Lc, namely the choice of Γcs.
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To find a set of nullspace spanning vectors, the cell-centered gradient, ΓscG, is
first rewritten to a Gauss gradient form, which is more commonly used in code
implementations:

[GGφ ]i =
1

[Ωc]i
∑

f∈Ff (i)
S f φ f (10)

Next, as an example, the volumetric cell-centered gradient is rewritten to a Gauss
Gradient form:

[
Γ V

sc Gφ
]

i =
[
Ω−1Γ V T

cs ΩsGφ

]
i

from eqn. 9

= 1
[Ωc]i

∑ f∈Ff (i) S f δn f

(
1

δn f

δn f ,i
δn f

φn − 1
δn f

δn f ,i
δn f

φi

)
from eqn. 7

= 1
[Ωc]i

∑ f∈Ff (i) S f

(
δn f ,i
δn f

φn −
(

1− δn f , f
δn f

)
φi

)
from eqn. 8

= 1
[Ωc]i

∑ f∈Ff (i) S f

(
δn f ,i
δn f

φn +
δn f , f
δn f

φi

)
from eqn. 3

=
[
GGΠ L

csφ
]

i from eqn. 10

(11)

where in the final step it is simply noticed that the weights are the same as for a
scalar linear interpolator, given by Π L

cs. Any cell-centered gradient can be rewritten
to a Gauss gradient and a scalar interpolator, by rewriting the interpolation weight
of φi as: w f ,i = 1−w f ,n. The interpolators considered in this work are rewritten by:

Γ
M

sc G = GGΠ
M
cs , Γ

L
sc G = GGΠ

V
cs, Γ

V
sc G = GGΠ

L
cs (12)

These relations can be used to find the nullspace spanning vectors any Laplacian
operator, since we can simply find vectors for which GGΠcs = 0c. Moreover, many
codes use linear interpolation for the predictor velocity on the source side of the
Poisson equation, combined with a linear interpolation of pressure before taking the
Gauss gradient: Lc = MΓ L

cs GGΠ L
cs = MΓ L

cs Γ V
sc G, which is non-symmetric. This non-

symmetry in the operator can disrupt the conservation of physical properties or it
may even be the cause of spurious pressure modes to arise in the first place, since
the image of Lc and the kernel are not orthogonal if Lc is non-symmetric. To predict
a set of nullspace spanning vectors a simple adjustment can be made to the set in
equation 6:

[p⊖(1)
c ]i, j = 1, [p⊖(2)

c ]i, j = (−1)i(∆xi)
α

[p⊖(3)
c ]i, j = (−1) j(∆y j)

α , [p⊖(4)
c ]i, j = (−1)i+ j(∆xi∆y j)

α
(13)

where α = [−1,0,1] for volumetric, midpoint and linear interpolations respectively.
It can be easily verified that these vectors lie in the nullspace of their respective
Lc. Moreover, although the vectors are not necessarily orthogonal, they are linearly
independent and therefore span the nullspace of Lc. This is required since pc is
projected onto the nullspace and the result is subsequently subtracted to obtain p⊕

c .
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3 Conslusions

It was shown in this work that there is a strong relation between the nullity of Lc and
the used mesh. Moreover, it was shown that the nullity will in practice most often
be 1 for unstructured meshes, in which case the nullspace consists of the constant
vector. For Cartesian meshes the nullity is known and a set of nullspace spanning
vectors was derived for the most commonly used interpolators in the Laplace oper-
ator. Thereby in a strict mathematical sense, the spurious modes can effectively be
filtered in almost any case. This leads to the question if the wide stenciled Laplacian
can also give rise to decoupled pressure modes that do not strictly lie in its nullspace,
and if they can be filtered easily as well. These questions will be addressed in future
work.
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