A conservative solution to checkerboarding:

 Examining the discrete Laplacian kernel using mesh connectivityJ.A. Hopman, F.X. Trias and J.Rigola
Heat and Mass Transfer Technological Center (CTTC)
Technical University of Catalonia (UPC), Terrassa, Spain

Pressure-velocity coupling

$$
\begin{aligned}
\mathbf{u}^{n+1} & =\mathbf{u}^{p}-\nabla \mathbf{p}^{n+1} \\
\nabla \cdot \mathbf{u}^{n+1} & =0 \\
\nabla^{2} \mathbf{p}^{n+1} & =\nabla \cdot \mathbf{u}^{p}
\end{aligned}
$$

collocated

Pressure-velocity coupling

$$
\begin{aligned}
\mathbf{u}^{n+1} & =\mathbf{u}^{p}-\nabla \mathbf{p}^{n+1} \\
\nabla \cdot \mathbf{u}^{n+1} & =0 \\
\nabla^{2} \mathbf{p}^{n+1} & =\nabla \cdot \mathbf{u}^{p}
\end{aligned}
$$

staggered
collocated

```
UNIVERSITAT POLITĖCNICA
``` DE CATALUNYA
BARCELONATECH

\section*{Pressure-velocity coupling}
\[
\begin{aligned}
\mathbf{u}^{n+1} & =\mathbf{u}^{p}-\nabla \mathbf{p}^{n+1} \\
\nabla \cdot \mathbf{u}^{n+1} & =0 \\
\nabla^{2} \mathbf{p}^{n+1} & =\nabla \cdot \mathbf{u}^{p}
\end{aligned}
\]

\section*{Pressure-velocity coupling}
\[
\begin{aligned}
\mathbf{u}^{n+1} & =\mathbf{u}^{p}-\nabla \mathbf{p}^{n+1} \\
\nabla \cdot \mathbf{u}^{n+1} & =0 \\
\nabla^{2} \mathbf{p}^{n+1} & =\nabla \cdot \mathbf{u}^{p}
\end{aligned}
\]

Compact vs wide stencil Laplacian

\section*{Compact vs wide stencil Laplacian}

Compact vs wide stencil Laplacian

\section*{Compact vs wide stencil Laplacian}

\(L_{c}=M_{c} G_{c} \quad\) wide stencil \(\rightarrow\) decoupling of pressure

\section*{Compact vs wide stencil Laplacian}

\(L_{c}=M_{c} G_{c} \quad\) wide stencil \(\rightarrow\) decoupling of pressure

\section*{Motivation}

Can we remove spurious modes without pressure error? Develop proper filtering for Cartesian meshes
Gain insight in filtering for unstructured meshes

Spurious modes - Kernel of Laplacian
\[
\begin{aligned}
\mathbf{p}_{c} & =\mathbf{p}_{c}^{+}+\mathbf{p}_{c}^{-} \\
\mathbf{p}_{c}^{-} & \in \operatorname{Ker}\left(L_{c}\right) \\
L_{c} \mathbf{p}_{c} & =L_{c} \mathbf{p}_{c}^{+}+L_{c} \mathbf{p}_{c}^{-}=L_{c} \mathbf{p}_{c}^{+}
\end{aligned}
\]

\section*{Spurious modes - Kernel of Laplacian}
\[
\begin{aligned}
\mathbf{p}_{c} & =\mathbf{p}_{c}^{+}+\mathbf{p}_{c}^{-} \\
\mathbf{p}_{c}^{-} & \in \operatorname{Ker}\left(L_{c}\right) \\
L_{c} \mathbf{p}_{c} & =L_{c} \mathbf{p}_{c}^{+}+L_{c} \mathbf{p}_{c}^{-}=L_{c} \mathbf{p}_{c}^{+}
\end{aligned}
\]

Nullity \(\left(\mathrm{L}_{\mathrm{c}}\right)>1 \rightarrow\) spurious modes
(Nullity(L) \(=1\) : constant mode \(\rightarrow\) reference pressure)
If we know \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) we can just filter \(\mathbf{p}^{-}\)

\section*{Spurious modes - Kernel of Laplacian}
\[
\begin{aligned}
\mathbf{p}_{c} & =\mathbf{p}_{c}^{+}+\mathbf{p}_{c}^{-} \\
\mathbf{p}_{c}^{-} & \in \operatorname{Ker}\left(L_{c}\right) \\
L_{c} \mathbf{p}_{c} & =L_{c} \mathbf{p}_{c}^{+}+L_{c} \mathbf{p}_{c}^{-}=L_{c} \mathbf{p}_{c}^{+}
\end{aligned}
\]

Nullity \(\left(\mathrm{L}_{\mathrm{c}}\right)>1 \rightarrow\) spurious modes
(Nullity(L) \(=1\) : constant mode \(\rightarrow\) reference pressure)
If we know \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) we can just filter \(\mathbf{p}\)
Calculate using Singular Value Decomposition?

\section*{Spurious modes - Kernel of Laplacian}
\[
\begin{aligned}
\mathbf{p}_{c} & =\mathbf{p}_{c}^{+}+\mathbf{p}_{c}^{-} \\
\mathbf{p}_{c}^{-} & \in \operatorname{Ker}\left(L_{c}\right) \\
L_{c} \mathbf{p}_{c} & =L_{c} \mathbf{p}_{c}^{+}+L_{c} \mathbf{p}_{c}^{-}=L_{c} \mathbf{p}_{c}^{+}
\end{aligned}
\]

Nullity \(\left(\mathrm{L}_{\mathrm{c}}\right)>1 \rightarrow\) spurious modes
(Nullity(L) \(=1\) : constant mode \(\rightarrow\) reference pressure)
If we know \(\operatorname{Ker}\left(L_{c}\right)\) we can just filter \(\mathbf{p}\)
Calculate using Singular Value Decomposition?
Cost cales with \(\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)\)

\section*{Spurious modes - Kernel of Laplacian}
\[
\begin{aligned}
\mathbf{p}_{c} & =\mathbf{p}_{c}^{+}+\mathbf{p}_{c}^{-} \\
\mathbf{p}_{c}^{-} & \in \operatorname{Ker}\left(L_{c}\right) \\
L_{c} \mathbf{p}_{c} & =L_{c} \mathbf{p}_{c}^{+}+L_{c} \mathbf{p}_{c}^{-}=L_{c} \mathbf{p}_{c}^{+}
\end{aligned}
\]

Nullity \(\left(\mathrm{L}_{\mathrm{c}}\right)>1 \rightarrow\) spurious modes
(Nullity(L) \(=1\) : constant mode \(\rightarrow\) reference pressure)
If we know \(\operatorname{Ker}\left(L_{c}\right)\) we can just filter \(\mathbf{p}\)
Calculate using Singular Value Decomposition?
Cost cales with \(\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)\)
\(L_{c}\) depends on mesh and discretisation; can't we deduce \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) from mesh and discretisation?

Laplacian matrix - interpolators
\[
L_{c}=M_{c} G_{c}
\]

\section*{Laplacian matrix - interpolators}
\[
\begin{gathered}
L_{c}=M_{c} G_{c} \\
M_{c}=M \Gamma_{c s} \quad G_{c}=\Gamma_{s c} G
\end{gathered}
\]

\section*{Laplacian matrix - interpolators}
\[
\begin{gathered}
L_{c}=M_{c} G_{c} \\
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c}} G
\end{gathered}
\]

Laplacian matrix - interpolators
\[
\begin{gathered}
L_{c}=M_{c} G_{c} \\
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c} G} \\
-M^{T}=\Omega_{s} G \\
-M_{c}^{T}=\Omega_{c} G_{c}
\end{gathered}
\]

Laplacian matrix - interpolators
\[
\begin{gathered}
L_{c}=M_{c} G_{c} \\
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c}} G \\
-M^{T}=\Omega_{s} G \\
-M_{c}^{T}=\Omega_{c} G_{c} \\
\Gamma_{s c}=\Omega_{c}^{-1} \Gamma_{c s}^{T} \Omega_{s}
\end{gathered}
\]

\section*{Laplacian matrix - interpolators}
\[
\begin{gathered}
L_{c}=M_{c} G_{c} \\
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c}} G \\
-M^{T}=\Omega_{s} G \\
-M_{c}^{T}=\Omega_{c} G_{c} \\
\\
\Gamma_{s c}=\Omega_{c}^{-1} \Gamma_{c s}^{T} \Omega_{s}
\end{gathered}
\]

Interpolators related, 1 d.o.f.

\section*{Laplacian matrix - interpolators}
\[
\begin{gathered}
L_{c}=M_{c} G_{c} \\
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c} G} \\
-M^{T}=\Omega_{s} G \\
-M_{c}^{T}=\Omega_{c} G_{c}
\end{gathered}
\]

Interpolators related, 1 d.o.f.

\section*{Laplacian matrix - interpolators}
\[
L_{c}=M_{c} G_{c}
\]
\[
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c}} G
\]
\[
\begin{aligned}
& -M^{T}=\Omega_{s} G \\
& -M_{c}^{T}=\Omega_{c} G_{c}
\end{aligned}
\]
\[
\Gamma_{s c}=\Omega_{c}^{-1} \Gamma_{c s}^{T} \Omega_{s}
\]

Midpoint: \(\quad \Pi_{c s}^{M} \rightarrow \phi_{f}=\frac{\phi_{L}+\phi_{R}}{2}\)
Linear: \(\quad \Pi_{c s}^{L} \rightarrow \phi_{f}=\frac{d_{R} \phi_{L}+d_{L} \phi_{R}}{d_{f}}\)
Volumetric: \(\Pi_{c s}^{V} \rightarrow \phi_{f}=\frac{d_{L} \phi_{L}+d_{R} \phi_{R}}{d_{f}}\)

\section*{Laplacian matrix - interpolators}
\[
L_{c}=M_{c} G_{c}
\]
\[
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c}} G
\]
\[
\begin{aligned}
& -M^{T}=\Omega_{s} G \\
& -M_{c}^{T}=\Omega_{c} G_{c}
\end{aligned}
\]
\[
\Gamma_{s c}=\Omega_{c}^{-1} \Gamma_{c s}^{T} \Omega_{s}
\]

Midpoint: \(\quad \Pi_{c s}^{M} \rightarrow \phi_{f}=\frac{\phi_{L}+\phi_{R}}{2}\)
Linear: \(\quad \Pi_{c s}^{L} \rightarrow \phi_{f}=\frac{d_{R} \phi_{L}+d_{L} \phi_{R}}{d_{f}}\)
Volumetric: \(\Pi_{c s}^{V} \rightarrow \phi_{f}=\frac{d_{L} \phi_{L}+d_{R} \phi_{R}}{d_{f}}\)

Interpolators related, 1 d.o.f.

\section*{Laplacian matrix - interpolators}
\[
L_{c}=M_{c} G_{c}
\]
\[
M_{c}=M \underline{\Gamma_{c s}} \quad G_{c}=\underline{\Gamma_{s c}} G
\]
\[
\begin{aligned}
& -M^{T}=\Omega_{s} G \\
& -M_{c}^{T}=\Omega_{c} G_{c}
\end{aligned}
\]
\[
\Gamma_{s c}=\Omega_{c}^{-1} \Gamma_{c s}^{T} \Omega_{s}
\]

Midpoint: \(\quad \Pi_{c s}^{M} \rightarrow \phi_{f}=\frac{\phi_{L}+\phi_{R}}{2}\)
Linear: \(\quad \Pi_{c s}^{L} \rightarrow \phi_{f}=\frac{d_{R} \phi_{L}+d_{L} \phi_{R}}{d_{f}}\)
Volumetric: \(\Pi_{c s}^{V} \rightarrow \phi_{f}=\frac{d_{L} \phi_{L}+d_{R} \phi_{R}}{d_{f}}\)

Interpolators related, 1 d.o.f.

Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint
\[
\left[L_{c}\right]_{i, k}=\sum_{j} \frac{1}{4\left[\Omega_{c}\right]_{j}}\left(A_{i, j} \mathbf{n}_{i, j}\right) \cdot\left(A_{j, k} \mathbf{n}_{j, k}\right) \quad \text { Group together the second neighbours }
\]

\section*{Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint}
\[
\left[L_{c}\right]_{i, k}=\sum_{j} \frac{1}{4\left[\Omega_{c}\right]_{j}}\left(A_{i, j} \mathbf{n}_{i, j}\right) \cdot\left(A_{j, k} \mathbf{n}_{j, k}\right) \quad \text { Group together the second neighbours }
\]

\section*{Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint}
\[
\left[L_{c}\right]_{i, k}=\sum_{j} \frac{1}{4\left[\Omega_{c}\right]_{j}}\left(A_{i, j} \mathbf{n}_{i, j}\right) \cdot\left(A_{j, k} \mathbf{n}_{j, k}\right) \quad \text { Group together the second neighbours }
\]

\section*{Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint}

\section*{Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint}

\section*{Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint}

Vectors that span the kernel can be derived from the mesh.
Nullity = number of disconnected cell groups

\section*{Relation between \(\operatorname{Ker}\left(\mathrm{L}_{\mathrm{c}}\right)\) and mesh - Midpoint}

Nullity \(=2\)

Nullity \(=2^{\text {Dim }}=4\)

Nullity = 1

Vectors that span the kernel can be derived from the mesh.
Nullity = number of disconnected cell groups

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

Rewriting the gradient operator

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]
\[
\Gamma_{s c}^{V} G \phi=\Omega^{-1} \Gamma_{c s}^{V}{ }^{T} \Omega_{s} G \phi
\]
\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\Gamma_{s c}^{V} G \phi=\Omega^{-1} \Gamma_{c s}^{V} \Omega_{s} G \phi
\]
\[
=\frac{1}{V} \sum \mathbf{S}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} w_{f i} \\
\frac{-1}{d_{f}} w_{f i}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\Gamma_{s c}^{V} G \phi=\underline{\Omega}^{-1} \Gamma_{c s}^{V} \Omega_{s} G \phi
\]
\[
=\frac{1}{\underline{V}} \sum \mathbf{s}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} w_{f i} \\
\frac{-1}{d_{f}} w_{f i}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\Gamma_{s c}^{V} G \phi=\underline{\Omega}^{-1}{\underline{\Gamma_{c s}}}^{V} \Omega_{s} G \phi
\]
\[
=\frac{1}{V} \sum \mathbf{s}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} w_{f i} \\
\frac{-1}{d_{f}} w_{f i}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\Gamma_{s c}^{V} G \phi=\underline{\Omega}^{-1}{\underline{\Gamma_{c s}}}^{V} \underline{\Omega}_{s} G \phi
\]
\[
=\frac{1}{V} \sum \mathbf{s}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} \underline{w_{f i}} \\
\frac{-1}{d_{f}} \underline{w_{f i}}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]

\section*{Rewriting the gradient operator}

Gauss Gradient: \(\quad G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}\)
\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\begin{aligned}
\Gamma_{s c}^{V} G \phi & =\Omega^{-1} \underline{\Gamma_{c s}^{V}} \Omega_{s} \underline{G} \phi \\
& =\frac{1}{V} \sum \mathbf{s}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} w_{f i} \\
\frac{-1}{d_{f}} \\
w_{f i}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\end{aligned}
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\Gamma_{s c}^{V} G \phi=\Omega^{-1} \Gamma_{c s}^{V} \Omega_{s} G \phi
\]
\[
=\frac{1}{V} \sum \mathbf{S}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} w_{f i} \\
\frac{-1}{d_{f}}\left(1-w_{f n}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]

\section*{Rewriting the gradient operator}

Gauss Gradient:
\[
G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}
\]

\[
\underline{\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}}
\]
\[
\Gamma_{s c}^{V} G \phi=\Omega^{-1} \Gamma_{c s}^{V} \Omega_{s} G \phi
\]
\[
=\frac{1}{V} \sum \mathbf{s}_{f} d_{f}\left[\begin{array}{l}
\frac{1}{d_{f}} w_{f i} \\
\frac{-1}{d_{f}}\left(\nmid-w_{f n}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]

\section*{Rewriting the gradient operator}

Gauss Gradient: \(\quad G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}\)
\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\begin{aligned}
\Gamma_{s c}^{V} G \phi & =\Omega^{-1} \Gamma_{c s}^{V}{ }^{T} \Omega_{s} G \phi \\
& =\frac{1}{V} \sum \mathbf{S}_{f}\left[\begin{array}{c}
w_{f i} \\
w_{f n}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\end{aligned}
\]

\section*{Rewriting the gradient operator}

Gauss Gradient: \(\quad G_{G} \phi_{f}=\frac{1}{V} \sum \phi_{f} \mathbf{S}_{f}\)
\[
\sum \phi_{i} \mathbf{S}_{f}=\mathbf{0}
\]
\[
\Gamma_{s c}^{V} G \phi=\Omega^{-1} \Gamma_{c s}^{V T} \Omega_{s} G \phi
\]
\[
=\frac{1}{V} \sum \mathbf{s}_{f}\left[\begin{array}{l}
w_{f i} \\
w_{f n}
\end{array}\right] \cdot\left[\begin{array}{l}
\phi_{n} \\
\phi_{i}
\end{array}\right]
\]
\[
=G_{G} \Pi_{c s}^{L} \phi
\]

```

UNIVERSITAT POLITĖCNICA

``` DE CATALUNYA
BARCELONATECH

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}

```

UNIVERSITAT POLITĖCNICA

``` DE CATALUNYA

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G=\) & \(G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}

```

UNIVERSITAT POLITĖCNICA

``` DE CATALUNYA

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(=G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}

```

UNIVERSITAT POLITĖCNICA

``` DE CATALUNYA

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(=G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}
- Less options for \(L_{c}\)

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(=G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}
- Less options for \(L_{c}\)
- \(\mathrm{G}_{\mathrm{G}}\) is easier to implement

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(=G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}
- Less options for \(L_{c}\)
- \(\mathrm{G}_{\mathrm{G}}\) is easier to implement
- Many solvers use \(M \Gamma_{c s}^{L} G_{G} \Pi_{c s}^{L}\) which is non-symmetric

\section*{Relations between gradient operators}
\begin{tabular}{|c|c|c|}
\hline & \(G_{c}=\Gamma_{s c} G\) & \(G_{c}=G_{G} \Pi_{c s}\) \\
\hline Midpoint & \(\Gamma_{s c}^{M} G\) & \(=G_{G} \Pi_{c s}^{M}\) \\
\hline Linear & \(\Gamma_{s c}^{L} G\) & \(G_{G} \Pi_{c s}^{L}\) \\
\hline Volumetric & \(\Gamma_{s c}^{V} G\) & \(G_{G} \Pi_{c s}^{V}\) \\
\hline
\end{tabular}
- Less options for \(L_{c}\)
- \(\mathrm{G}_{\mathrm{G}}\) is easier to implement
- Many solvers use \(M \Gamma_{c s}^{L} G_{G} \Pi_{c s}^{L}\) which is non-symmetric
- Useful in deriving kernel vectors

Predicting kernel vectors

Predicting kernel vectors
\[
\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j}=1
\]

Predicting kernel vectors
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i}
\end{aligned}
\]

Predicting kernel vectors
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j}
\end{aligned}
\]

Predicting kernel vectors
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}
\end{aligned}
\]

\section*{Predicting kernel vectors}
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}
\end{aligned}
\]

\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

\[
G_{c}=G_{G} \Pi_{c s}^{L}: \quad \mathbf{p}_{c}^{-(1)}=\Delta x_{0} \quad-\Delta x_{1} \quad \Delta x_{2} \quad-\Delta x_{3}
\]

\section*{Predicting kernel vectors}
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}
\end{aligned}
\]

\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

\[
G_{c}=G_{G} \Pi_{c s}^{L}: \quad \mathbf{p}_{c}^{-(1)}=\Delta x_{0} \quad-\Delta x_{1} \quad \Delta x_{2} \quad-\Delta x_{3}
\]

\section*{Predicting kernel vectors}
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}
\end{aligned}
\]

\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

\[
G_{c}=G_{G} \Pi_{c s}^{L}: \quad \mathbf{p}_{c}^{-(1)}=\Delta x_{0} \quad-\Delta x_{1} \quad \Delta x_{2} \quad-\Delta x_{3}
\]

\section*{Predicting kernel vectors}
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}
\end{aligned}
\]

\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

\[
\begin{gathered}
G_{c}=G_{G} \Pi_{c s}^{L}: \quad \mathbf{p}_{c}^{-(1)}=\Delta x_{0}-\Delta x_{1} \quad \Delta x_{2}-\Delta x_{3} \\
\Pi_{c s}^{L} \rightarrow \phi_{w}=\frac{\Delta x_{0} \Delta x_{1}-\Delta x_{1} \Delta x_{0}}{\Delta x_{0}+\Delta x_{1}}=0
\end{gathered}
\]

\section*{Predicting kernel vectors}
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i}\left(\Delta x_{i}\right)^{\alpha} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j}\left(\Delta y_{j}\right)^{\alpha} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}\left(\Delta x_{i} \Delta y_{j}\right)^{\alpha}
\end{aligned}
\]

\(\alpha= \begin{cases}1, & \text { if linear } \\ 0, & \text { if midpoint } \\ -1, & \text { if volumetric }\end{cases}\)

\[
\begin{gathered}
G_{c}=G_{G} \Pi_{c s}^{L}: \quad \mathbf{p}_{c}^{-(1)}=\Delta x_{0}-\Delta x_{1} \quad \Delta x_{2}-\Delta x_{3} \\
\Pi_{c s}^{L} \rightarrow \phi_{w}=\frac{\Delta x_{0} \Delta x_{1}-\Delta x_{1} \Delta x_{0}}{\Delta x_{0}+\Delta x_{1}}=0
\end{gathered}
\]

\section*{Predicting kernel vectors}
\[
\begin{aligned}
{\left[\mathbf{p}_{c}^{-(0)}\right]_{i, j} } & =1 \\
{\left[\mathbf{p}_{c}^{-(1)}\right]_{i, j} } & =(-1)^{i}\left(\Delta x_{i}\right)^{\alpha} \\
{\left[\mathbf{p}_{c}^{-(2)}\right]_{i, j} } & =(-1)^{j}\left(\Delta y_{j}\right)^{\alpha} \\
{\left[\mathbf{p}_{c}^{-(3)}\right]_{i, j} } & =(-1)^{i+j}\left(\Delta x_{i} \Delta y_{j}\right)^{\alpha}
\end{aligned}
\]

\[
G_{c}=G_{G} \Pi_{c s}^{L}: \quad \mathbf{p}_{c}^{-(1)}=\Delta x_{0} \quad-\Delta x_{1} \quad \Delta x_{2} \quad-\Delta x_{3}
\]
\[
\Pi_{c s}^{L} \rightarrow \phi_{w}=\frac{\Delta x_{0} \Delta x_{1}-\Delta x_{1} \Delta x_{0}}{\Delta x_{0}+\Delta x_{1}}=0
\]

Although not necessarily orthogonal, they are linearly independent, spanning the nullspace of \(L_{c}\)

\section*{Filtering spurious modes}
\(\mathbf{p}_{c}^{+}=\mathbf{p}_{c}-\sum_{i}\left(\mathbf{p}_{c} \cdot \hat{\mathbf{p}}_{c}^{-(i)}\right) \hat{\mathbf{p}}_{c}^{-(i)}\)

\section*{Filtering spurious modes}
\[
\mathbf{p}_{c}^{+}=\mathbf{p}_{c}-\sum_{i}\left(\mathbf{p}_{c} \cdot \hat{\mathbf{p}}_{c}^{-(i)}\right) \hat{\mathbf{p}}_{c}^{-(i)}
\]

(b)

(c)

(d)

Fig. 1. Inviscid Taylor vortex. (a) Temporal evolution of kinetic energy using the present (solid) and Rhie-Chow (dotted) methods. (b-d) Pressure contours for the present (b), Rhie-Chow method (c) and without any correction (d).

Discussion
```

UNIVERSITAT POLITÈCNICA

``` BE CATALUNYA

\section*{Discussion}
```

UNIVERSITAT POLITÈCNICA

``` DE CATALUNYA

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
```

UNIVERSITAT POLITĖCNICA

``` DE CATALUNYA
BARCELONATECH

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
```

UNIVERSITAT POLITĖCNICA DE CATALUNYA
BARCELONATECH

```

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?
```

UNIVERSITAT POLITĖCNICA DE CATALUNYA
BARCELONATECH

```

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

Simple mesh changes can reduce nullity to 1 .
```

UNIVERSITAT POLITÈCNICA

``` DE CATALUNYA
BARCELONATECH

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

```

UNIVERSITAT POLITÈCNICA

``` DE CATALUNYA
BARCELONATECH

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

Simple mesh changes can reduce nullity to 1.

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

Simple mesh changes can reduce nullity to 1.

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

Simple mesh changes can reduce nullity to 1.

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

Simple mesh changes can reduce nullity to 1.
- Will this eliminate checkerboarding?

```

UNIVERSITAT POLITÈCNICA DE CATALUNYA
BARCELONATECH

```

\section*{Discussion}

How do spurious modes arise?
- Non-symmetry of Laplacian operator?
- Solver?
- Rounding errors?

Simple mesh changes can reduce nullity to 1 .
- Will this eliminate checkerboarding?
- Are other (low EV) modes also problematic?

\section*{Thank you for attending!}
```

