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INTRODUCTION

Buoyancy-driven flows have always been an important sub-

ject of scientific studies with numerous applications in environ-

ment and technology. The most famous example thereof is the

thermally driven flow developed in a fluid layer heated from

below and cooled from above, i.e. the Rayleigh-Bénard con-

vection (RBC). It constitutes a canonical flow configuration

that resembles many natural and industrial processes, such as

solar thermal power plants, indoor space heating and cooling,

flows in nuclear reactors, electronic devices, and convection in

the atmosphere, oceans and the deep mantle.

In the last decades significant efforts, both numerically and

experimentally, have been directed at investigating the mecha-

nisms and the detailed scaling behavior of the Nusselt number

as a function of Rayleigh and Prandtl numbers in the general

form Nu ∝ RaγPrβ . In this regard, Figure 1 shows the pre-

dictions of the Nu-number based on the classical Grossmann-

Lohse (GL) theory [1] and its subsequent corrections [2, 3]

where different scaling regimes, characterized by their corre-

sponding exponents γ and β, are identified. Assuming this

power-law scalings and following the same reasonings as in

Ref. [4] leads to the estimations for the number of grid points

shown in Figure 2 (top). This corresponds to mesh resolu-

tion requirements for DNS and clearly explain why nowadays

DNS of RBC is still limited to relatively low Ra-numbers.

However, many of the above-mentioned applications are gov-

erned by much higher Ra numbers, located in the region of

the {Ra, Pr} phase space where the thermal boundary layer

becomes turbulent (see the black dash-dotted line in Figure 2).

This region corresponds to the so-called asymptotic Kraichnan

or ultimate regime of turbulence, with γ = 1/2. On the other

hand, reaching such Ra-numbers experimentally while keeping

the basic assumptions (Boussinesq approximation, adibatic-

ity of the closing walls, isothermal horizontal walls, perfectly

smooth surfaces...) is a very hard task; therefore, the obser-

vation of the Kraichnan regime also remains elusive [2, 3].

LES OF BUOYANCY-DRIVEN TURBULENCE

In this context, we may turn to LES to predict the large-

scale behavior of incompressible turbulent flows driven by

buoyancy at very high Ra-numbers. In LES, the large-scale

motions are explicitly computed, whereas the effects of small-

scale motions are modeled. Since the advent of CFD, many

subgrid-scale (SGS) models have been proposed and success-

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

P
r

Ra

Nusselt number

Onset turb−BL

water

air

liquid sodium
−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

lo
g

1
0

(N
u

)

4

4

4

4

4

4

4

4

4

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3.5

3

3

3

3

3

3

3

3

3

3

3

3

3

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

Figure 1: Estimation of the Nusselt number of a RBC in the

{Ra, Pr} phase space given by the classical GL theory [1] and its

subsequent corrections [2]. Green solid isolines represent the log10

of the Nusselt. Three dashed horizontal lines correspond to three

different working fluids: water (Pr = 7), air (Pr = 0.7) and liquid

sodium (Pr = 0.005). Black dash-dotted line is an estimation for

the onset of turbulence in the thermal boundary layer.

fully applied to a wide range of flows. However, there still exits

inherent difficulties in the proper modelization of the SGS heat

flux. This was analyzed in detail in the PRACE project enti-

tled ”Exploring new frontiers in Rayleigh-Bénard convection”

(33.1 millions of CPU hours on MareNostrum4 in 2018-2019),

where DNS simulations of air-filled (Pr = 0.7) RBC up to

Ra = 1011 were carried out using meshes up to 5600M grid

points (see dots displayed in Figure 2, top). These results

shed light into the flow topology and the small-scale dynamics

which are crucial in constructing the turbulent wind and en-

ergy budgets [5]. Moreover, it also provided new insights into

the preferential alignments of the SGS and its dependence with

the Ra-numbers [6], highlighting that the modelization of the

SGS heat flux is the main difficulty that (still) precludes reli-

able LES of buoyancy-driven flows at (very) high Ra-numbers.

This inherent difficulty can be by-passed by carrying out simu-

lations at low-Prandtl numbers. In this case, the ratio between

the Kolmogorov length scale and the Obukhov-Corrsin length

scale (the smallest scale for the temperature field) is given by

Pr3/4; therefore, for instance, at Pr = 0.005 (liquid sodium)

we have a separation of more than one decade. Hence, it is

possible to combine an LES simulation for the velocity field

(momentum equation) with the numerical resolution of all the
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Figure 2: Estimation of the mesh sizes for DNS (top) and LES

(bottom) simulations of RBC in the {Ra, Pr} phase space. LES

estimations assume that thermal scales are fully resolved, i.e. no

SGS heat flux model is needed. Green solid isolines represent the

log10 of the total number of grid points. Three dashed horizontal

lines correspond to three different working fluids: water (Pr = 7),

air (Pr = 0.7) and liquid sodium (Pr = 0.005). Dots displayed on

top of these lines correspond to the DNS simulations carried out in

previous studies [4, 5, 6]. Black dash-dotted line is an estimation

for the onset of turbulence in the thermal boundary layer.

thermal scales. Results obtained in Ref. [6] suggest that ac-

curate predictions of the overall Nu can be obtained with

meshes significantly coarser than for DNS (e.g. in practice

for Pr = 0.005 we can expect mesh reductions in the range

102-103 for the total number of grid points). This can be

clearly observed in Figure 2 (bottom), where estimations of

the mesh size for LES are given with the assumption that

thermal scales are fully resolved. This opens the possibility to

reach the ultimate regime carrying out LES at low-Pr using

meshes of 1010-1011 grid points. Nevertheless, to do so, we

firstly need to combine proper numerical techniques for LES

(also DNS) with an efficient use of modern supercomputers.

NUMERICAL METHODS AND ALGORITHMS FOR LARGE-

SCALE SIMULATIONS ON MODERN SUPERCOMPUTERS

The essence of turbulence are the smallest scales of motion.

They result from a subtle balance between convective trans-

port and diffusive dissipation. Mathematically, these terms

are governed by two differential operators differing in sym-

metry: the convective operator is skew-symmetric, whereas

the diffusive is symmetric and negative-definite. At discrete

level, operator symmetries must be retained to preserve the

analogous (invariant) properties of the continuous equations:

namely, the convective operator is represented by a skew-

symmetric matrix, the diffusive operator by a symmetric,

negative-definite matrix and the divergence is minus the trans-

pose of the gradient operator. In our opinion, this is the first

requirement for reliable DNS and LES simulations. Further-

more, these (large-scale) simulations should run efficiently on

the variety of modern HPC systems (CPUs, GPUs, ARM,...)

while keeping the code easy to port and maintain.

In this regard, a fully-conservative discretization for collo-

cated unstructured grids was proposed [7]. It exactly preserves

the symmetries of the underlying differential operators and is

based on only five discrete operators (i.e. matrices): the cell-

centered and staggered control volumes (diagonal matrices),

Ωc and Ωs, the face normal vectors, Ns, the cell-to-face inter-

polation, Πc→s and the cell-to-face divergence operator, M.

Therefore, it constitutes a robust approach that can be eas-

ily implemented in existing codes such as OpenFOAMR© [8].

Then, for the sake of cross-platform portability and opti-

mization, CFD algorithms must rely on a very reduced set

of (algebraic) kernels [9] (e.g. sparse-matrix vector product,

SpMV; dot product; linear combination of vectors). Results

showing the benefits of symmetry-preserving discretizations

will be presented together with novel methods aiming to keep

a good balance between code portability and performance. In

particular, results of DNS and LES results of RBC at dif-

ferent Ra will be presented focusing of the feasibility of the

developed LES technology to give accurate predictions of the

above-explained Nu-vs-Ra scalings. Comparison with DNS

results and with the classical GL theory will be conducted.
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