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1 Introduction

Buoyancy-driven flows have always been an important subject of scientific studies

with numerous applications in environment and technology. The most famous exam-

ple thereof is the thermally driven flow developed in a fluid layer heated from below

and cooled from above, i.e. the Rayleigh-Bénard convection (RBC). It constitutes a

canonical flow configuration that resembles many natural and industrial processes,

such as solar thermal power plants, indoor space heating and cooling, flows in nu-

clear reactors, electronic devices, and convection in the atmosphere, oceans and the

deep mantle.

In the last decades significant efforts, both numerically and experimentally, have

been directed at investigating the mechanisms and the detailed scaling behavior

of the Nusselt number as a function of Rayleigh and Prandtl numbers in the gen-

eral form Nu ∝ RaγPrβ [1]. In this regard, Figure 1 shows the predictions of the

Nu-number based on the classical Grossmann-Lohse (GL) theory [2] and its sub-

sequent corrections [3, 4] where different scaling regimes, characterized by their

corresponding exponents γ and β , are identified. Assuming this power-law scalings

and following the same reasoning as in Ref. [5] leads to the estimations for the

number of grid points shown in Figure 2 (top). This corresponds to mesh resolution

requirements for DNS and it clearly explains why nowadays DNS of RBC is still

limited to relatively low Ra-numbers [1]. However, many of the above-mentioned

applications are governed by much higher Ra numbers, located in the region of the
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Fig. 1 Estimation of the Nusselt number of a RBC in the {Ra,Pr} phase space given by the classi-

cal GL theory [2] and its subsequent corrections [3]. Green solid isolines represent the log10 of the

Nusselt. Three dashed horizontal lines correspond to three different working fluids: water (Pr = 7),

air (Pr = 0.7) and liquid sodium (Pr = 0.005). Dots displayed in the top figure correspond to the

DNS simulations carried out in previous studies [5, 7, 8]. Black dash-dotted line is an estimation

for the onset of turbulence in the thermal boundary layer.

{Ra,Pr} phase space where the thermal boundary layer becomes turbulent (i.e. be-

low the black dash-dotted line in Figure 2). This region corresponds to the so-called

asymptotic Kraichnan or ultimate regime of turbulence [6], with γ = 1/2. On the

other hand, reaching such Ra-numbers experimentally while keeping the basic as-

sumptions (Boussinesq approximation, adibaticity of the closing walls, isothermal

horizontal walls, perfectly smooth surfaces...) is a very hard task; therefore, the ob-

servation of the Kraichnan regime also remains elusive [3, 4].

2 LES of buoyancy-driven turbulence

In this context, we may turn to LES to predict the large-scale behavior of incom-

pressible turbulent flows driven by buoyancy at very high Ra-numbers. In LES,

the large-scale motions are explicitly computed, whereas the effects of small-scale

motions are modeled. Since the advent of CFD, many subgrid-scale (SGS) models

have been proposed and successfully applied to a wide range of flows. However,

there still exist inherent difficulties in the proper modelization of the SGS heat flux.

This was analyzed in detail in the PRACE project entitled ”Exploring new fron-

tiers in Rayleigh-Bénard convection” (33.1 millions of CPU hours on MareNos-

trum 4 in 2018-2019), where DNS simulations of air-filled (Pr = 0.7) RBC up to

Ra = 1011 were carried out using meshes up to 5600M grid points (see dots dis-

played in Figures 1 and 2, top). These results shed light into the flow topology and

the small-scale dynamics, which are crucial in constructing the turbulent wind and
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energy budgets [7]. Moreover, it also provided new insights into the preferential

alignments of the SGS and its dependence with the Ra-numbers [8], highlighting

that the modelization of the SGS heat flux is the main difficulty that (still) precludes

reliable LES of buoyancy-driven flows at (very) high Ra-numbers. This inherent

difficulty can be by-passed by carrying out simulations at low-Prandtl numbers. In

this case, the ratio between the Kolmogorov length scale and the Obukhov-Corrsin

length scale (the smallest scale for the temperature field) is given by Pr3/4; there-

fore, for instance, at Pr = 0.005 (liquid sodium) we have a separation of more than

one decade. Hence, it is possible to combine an LES simulation for the velocity

field (momentum equation) with the numerical resolution of all the thermal scales.

Results obtained in Ref. [8] suggest that accurate predictions of the overall Nu can

be obtained with meshes significantly coarser than those needed for a DNS (e.g. in

practice for Pr = 0.005 we can expect mesh reductions in the range 102-103 for the

total number of grid points leading to computational cost reductions in the range

103-104). This can be clearly observed in Figure 2 (bottom), where estimations of

the mesh size for LES are given with the assumption that thermal scales are fully

resolved. This opens the possibility to reach the ultimate regime carrying out LES at

low-Pr using meshes of ”only” 1010-1011 grid points. Nevertheless, to do so, we also

need to combine proper numerical techniques for LES (also DNS) with an efficient

use of modern high-performance computing (HPC) systems.

3 Numerical methods and algorithms for large-scale simulations

on modern supercomputers

The essence of turbulence are the smallest scales of motion. They result from a

subtle balance between convective transport and diffusive dissipation. Mathemati-

cally, these terms are governed by two differential operators differing in symmetry:

the convective operator is skew-symmetric, whereas the diffusive is symmetric and

negative semi-definite. At discrete level, operator symmetries must be retained to

preserve the analogous (invariant) properties of the continuous equations: namely,

the convective operator is represented by a skew-symmetric matrix, the diffusive op-

erator by a symmetric, negative semi-definite matrix and the divergence is minus the

transpose of the gradient operator. In our opinion, this is a basic requirement for reli-

able DNS and LES simulations. Furthermore, these (large-scale) simulations should

run efficiently on the variety of modern HPC systems (CPUs, GPUs, ARM,...) while

keeping the code easy to port, optimize and maintain.

In this regard, a fully-conservative discretization for collocated unstructured grids

was proposed [9]. It exactly preserves the symmetries of the underlying differen-

tial operators and is based on only five discrete operators (i.e. matrices): the cell-

centered and staggered control volumes (diagonal matrices), Ωc and Ωs, the face

normal vectors, Ns, the cell-to-face interpolation, Πc→s and the cell-to-face diver-

gence operator, M. Therefore, it constitutes a robust approach that can be easily
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Fig. 2 Estimation of the mesh sizes for DNS (top) and LES (bottom) simulations of RBC in the

{Ra,Pr} phase space. LES estimations assume that thermal scales are fully resolved, i.e. no SGS

heat flux model is needed. Green solid isolines represent the log10 of the total number of grid

points. Three dashed horizontal lines correspond to three different working fluids: water (Pr = 7),

air (Pr = 0.7) and liquid sodium (Pr = 0.005). Dots displayed in the top figure correspond to the

DNS simulations carried out in previous studies [5, 7, 8] whereas the dots shown in the bottom

figure are the set of LES simulations (being) carried out in the present work. Black dash-dotted

line is an estimation for the onset of turbulence in the thermal boundary layer.

implemented in existing codes such as OpenFOAM R© [10]. Then, for the sake of

cross-platform portability and optimization, CFD algorithms should rely on a very

reduced set of (algebraic) kernels [11] (e.g. sparse-matrix vector product, SpMV; dot

product; linear combination of vectors). In this implementation approach, the basic

kernels of the code shrink to dozens of lines; therefore, the portability becomes natu-

ral, and maintaining multiple implementations for different HPC architectures takes

minor effort.
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Fig. 3 Nu-vs-Ra results obtained with LES simulations at Pr = 0.005 using the same RBC con-

figuration as in Ref.[8] where the two DNS results (solid black dots) were computed. The vertical

dash-dotted line corresponds to the estimated Ra (for this particular Pr) where the thermal bound-

ary layer becomes turbulent.

4 First results and conclusions

The above explained numerical techniques are being used to carry out a set of

LES simulations of RBC at Pr = 0.005 for a wide range of Ra numbers (see

dots in Figure 2, bottom). The configuration is the same as in Ref.[8] where two

DNS simulations (solid black dots in Figure 3) were computed using meshes with

488 × 488 × 1280 ≈ 305M (Ra = 7.14 × 106) and 996 × 996 × 2048 ≈ 1911M

(Ra = 7.14× 107) grid points, respectively. For the LES simulations, two levels

of mesh refinement are being used: namely, a fine level that approximately cor-

responds to estimations shown in Figure 2 (bottom) and a coarse level which is

approximately twice coarser in each spatial direction. For instance, LES meshes at

Ra= 7.14×107 have respectively 44×44×96≈ 0.19M and 90×90×160≈ 1.3M

grid points, i.e. ≈ 10000 and ≈ 1500 coarser compared with the DNS mesh. Meshes

are designed to properly resolve the boundary layer whereas the much coarser bulk

region is fine enough to guarantee that thermal scales are fully resolved, i.e. no SGS

heat flux model is needed. Then, the SGS stress tensor is modelled using the S3PQ

model [12] which was already tested for this RBC configuration in Ref. [8].

Results of the overall Nusselt number are displayed in Figure 3. LES simulations

up to Ra = 7.14× 1010 (for the coarse level) and Ra = 2.26× 1010 (for the fine

level) are still being computed on MareNostrum 4 supercomputer. These points are

located beyond the transition point for this Pr-number (see Figure 2, bottom). Nev-

ertheless, these simulations are not statistically converged yet and, therefore, results
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are not shown here. At first sight, we can observe an accurate agreement with previ-

ous DNS results. Furthermore, there is a rather good agreement with the Nu-vs-Ra

scaling predicted using the DNS data. In any case, these preliminary results show

the capability to obtain accurate predictions of the Nu-number using LES simula-

tions. Accordingly to the classical GL theory, on-going LES simulations at higher

Ra-number should possibly show a change in the Nu-vs-Ra scaling indicating that

we are finally hitting the ultimate regime of thermal turbulence.
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