

DNS and LES of buoyancy-driven turbulence at high Rayleigh numbers

<u>F.Xavier Trias</u>¹, X.Álvarez-Farré¹, Daniel Santos¹, Andrey Gorobets², Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Keldysh Institute of Applied Mathematics of RAS, Russia

DNS and LES of buoyancy-driven turbulence at high Rayleigh numbers: numerical methods and SGS models

<u>F.Xavier Trias</u>¹, X.Álvarez-Farré¹, Daniel Santos¹, Andrey Gorobets², Assensi Oliva¹

 $^1{\rm Heat}$ and Mass Transfer Technological Center, Technical University of Catalonia $^2{\rm Keldysh}$ Institute of Applied Mathematics of RAS, Russia

Motivation 00	Preserving symmetries at discrete level	Portability and beyond 0	LES of RBC 0000	Conclusions
<u> </u>				

Contents

- 2 Preserving symmetries at discrete level
- Portability and beyond

4 LES of RBC

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
●0	000	0	0000	00
Motivat	ion			

Research question #1:

• Can we hit the ultimate regime of thermal turbulence

?

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
●0		0	0000	00
Motivat	ion			

Research question #1:

• Can we hit the ultimate regime of thermal turbulence with DNS?

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
●0		0	0000	00
Motivat	ion			

Research question #1:

• Can we hit the ultimate regime of thermal turbulence with LES?

Motivation 0●	Preserving symmetries at discrete level	Portability and beyond O	LES of RBC 0000	Conclusions 00
Motivat	ion			
DNS				

Motivation ○●	Preserving symmetries at discrete level	Portability and beyond O	LE

Motivation

HPC (High Performance Computing)

Numerical methods for DNS/LES

Research question #2:

• Can we construct numerical discretizations of the Navier-Stokes equations suitable for **complex geometries**, such that the **symmetry properties** are exactly preserved?

DNS¹ of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
	000			

Symmetry-preserving discretization on unstructured grids³

Continuous

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

³F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Motivation 00	Preserving symmetries at discrete level 000	Portability and beyond 0	LES of RBC 0000	Conclusion
Symm	etry-preserving discre	tization on uns	structured	l grids ³
	Continuous	Dis	screte	
$\frac{\partial \boldsymbol{u}}{\partial t}$ +	$+ C(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla p$	$\Omega \frac{d\boldsymbol{u}_h}{dt} + C\left(\boldsymbol{u}_h\right)$	$u_h = Du_h$ -	– Gp _h
	$ abla \cdot oldsymbol{u} = 0$	N	$\mathbf{u}_{h} = 0_{h}$	

³F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Motivation 00	Preserving symmetries at discrete level ○●○	Portability and beyond 0	LES of RBC 0000	Conclusion 00
Symm	etry-preserving discret	tization on uns	structured	l grids ³
	Continuous	Dis	screte	
$\frac{\partial \boldsymbol{u}}{\partial t}$ +	$-C(\boldsymbol{u},\boldsymbol{u})=\nu\nabla^{2}\boldsymbol{u}-\nabla\rho$	$\Omega \frac{d\boldsymbol{u}_h}{dt} + C\left(\boldsymbol{u}_h\right)$	$u_h = Du_h$	– <mark>Gp_h</mark>
	$ abla \cdot \boldsymbol{u} = \boldsymbol{0}$	N	$\mathbf{u}_h = 0_h$	
	$\langle oldsymbol{a},oldsymbol{b} angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$	$\left_h=$	$\pmb{a}_h^T \Omega \pmb{b}_h$	

³F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Motivation 00	Preserving symmetries at discrete level 0●0	Portability and beyond O	LES of RBC 0000	Conclusion
Symm	etry-preserving discret	ization on uns	structured	grids ³
	Continuous	Dis	screte	
$\frac{\partial \boldsymbol{u}}{\partial t}$ +	$-C(\mathbf{u},\mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$ $\nabla \mathbf{u} = 0$	$\Omega \frac{d\boldsymbol{u}_h}{dt} + C \left(\boldsymbol{u}_h \right)$	$u_h = Du_h - Du_h$	– Gp _h
	$\sqrt{u} = 0$	Ĩv	$\mathbf{u}_h = 0_h$	
	$\langle oldsymbol{a},oldsymbol{b} angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$	$\left_h=$	$\boldsymbol{a}_{h}^{T} \Omega \boldsymbol{b}_{h}$	
ζ C (u , φ	$\langle \varphi_1 \rangle, \varphi_2 \rangle = - \langle C(\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$	$C(\boldsymbol{u}_h) =$	$-C^{T}\left(\boldsymbol{u}_{h}\right)$	

³F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Motivation 00	Preserving symmetries at discrete level 000	Portability and beyond O	LES of RBC 0000	Conclusion 00
Symm	etry-preserving discret	ization on uns	structured	grids ³
	Continuous	Dis	screte	
$\frac{\partial \boldsymbol{u}}{\partial t}$ +	$+ C(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$	$\Omega \frac{d\boldsymbol{u}_h}{dt} + C\left(\boldsymbol{u}_h\right)$	$\boldsymbol{u}_h = D \boldsymbol{u}_h$ -	– <mark>Gp_h</mark>
	$ abla \cdot \boldsymbol{u} = 0$	N	$oldsymbol{u}_h = oldsymbol{0}_h$	
	$\langle oldsymbol{a},oldsymbol{b} angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$	$\left_h=$	$\boldsymbol{a}_{h}^{T} \Omega \boldsymbol{b}_{h}$	
(C (u , پ (۲	$\langle \varphi_1 \rangle, \varphi_2 \rangle = - \langle C(\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$ $\nabla \cdot \boldsymbol{a}, \varphi \rangle = - \langle \boldsymbol{a}, \nabla \varphi \rangle$	$C(\boldsymbol{u}_h) =$ $\Omega G =$	$-C^{T}(\boldsymbol{u}_h)$ $-M^{T}$	

³F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Motivation 00	Preserving symmetries at discrete level ○●○	Portability and beyond O	LES of RBC 0000	Conclusion
Symm	netry-preserving discret	ization on uns	structured	grids ³
	Continuous	Dis	screte	
$\frac{\partial \boldsymbol{u}}{\partial t}$	+ $C(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla p$ $\nabla \cdot \boldsymbol{u} = 0$	$\Omega \frac{d\boldsymbol{u}_h}{dt} + C\left(\boldsymbol{u}_h\right)$	$oldsymbol{u}_h = oldsymbol{D}oldsymbol{u}_h = oldsymbol{D}oldsymbol{u}_h = oldsymbol{O}_h$	- Gp _h
	$\langle oldsymbol{a},oldsymbol{b} angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$	$\left_h=$	$\pmb{a}_h^T \Omega \pmb{b}_h$	
(<i>C</i> (<i>u</i> , ς) ((۲	$\langle \varphi_1 \rangle, \varphi_2 \rangle = - \langle C(\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$ $\nabla \cdot \boldsymbol{a}, \varphi \rangle = - \langle \boldsymbol{a}, \nabla \varphi \rangle$ $\nabla^2 \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \nabla^2 \boldsymbol{b} \rangle$	$C(\boldsymbol{u}_h) = \Omega G = D = D$	$-C^{T}(\boldsymbol{u}_{h}) \\ -M^{T} \\ D^{T} def$	_

³F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

4

5

Why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling^{4,5}

⁴ J.A.Hopman, F.X.Trias, J.Rigola. On a conservative solution to checkerboarding: examining the discrete Laplacian kernel using mesh connectivity **On Friday at 10:05 in Sala Paolino d'Aquileia**

⁵D.Santos, F.X.Trias, G.Colomer, A.Oliva. An energy-preserving unconditionally stable fractional step method for DNS/LES on collocated unstructured grids **On Friday at 10:20 in Sala Paolino d'Aquileia**

HPC on modern supercomputers

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
00		•	0000	00

HPC on modern supercomputers

Research question #3:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

⁰X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021

⁷À.Alsalti, X.Álvarez, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation (submitted).

Motivation 00	Preserving symmetries at discrete level	Portability and beyond	LES of RBC 0000	Conclusions

HPC on modern supercomputers

Research question #3:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

HPC²: portable, algebra-based framework for heterogeneous computing is being developed⁶. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are under development⁷.

⁰X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021

⁷ À.Alsalti, X.Álvarez, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation (submitted).

Motivation 00	Preserving symmetries at discrete level	Portability and beyond O	LES of RBC ●000	Conclusions 00	
Problems to model the SGS heat flux ⁸					
∂_{i}	$_{t}\overline{\boldsymbol{u}}+(\overline{\boldsymbol{u}}\cdot\nabla)\overline{\boldsymbol{u}}=\nu\nabla^{2}\overline{\boldsymbol{u}}-\nabla$	$\overline{p} = -\nabla \cdot \tau(\overline{u})$	$\nabla \cdot \overline{u} =$	0	

eddy-viscosity $\longrightarrow \tau (\overline{\boldsymbol{u}}) = -2\nu_t S(\overline{\boldsymbol{u}})$

 $\nu_t \approx (C_m \delta)^2 D_m(\overline{u}) \longrightarrow \{ WALE, Vreman, QR, Sigma, S3PQR,... \}$

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Motivation 00	Preserving symmetries at discrete level	Portability and beyond 0	LES of RBC ●000	Conclusions 00
Problem	ns to model the SGS I	heat flux ⁸		
∂_t	$\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla)\overline{\boldsymbol{u}} = \nu \nabla^2 \overline{\boldsymbol{u}} - \nabla \overline{\boldsymbol{\mu}}$	$\bar{\boldsymbol{o}} + \overline{\boldsymbol{f}} - \nabla \cdot \boldsymbol{\tau}(\overline{\boldsymbol{u}})$;	$ abla \cdot \overline{\boldsymbol{u}} = \boldsymbol{0}$	
	eddy-viscosity $\longrightarrow \tau$ ($\bar{\iota}$	$(\overline{u}) = -2\nu_t S(\overline{u})$		

 $\nu_t \approx (C_m \delta)^2 D_m(\overline{u}) \longrightarrow \{ WALE, Vreman, QR, Sigma, S3PQR,... \}$

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Motivation 00	Preserving symme		Portability and beyond O	LES of RBC ●000	Conclusions
Problem	ns to mod	lel the SGS	heat flux ⁸		
∂_t	$\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla)^{\mathrm{T}}$	$\overline{\boldsymbol{u}} = \nu \nabla^2 \overline{\boldsymbol{u}} - \nabla_{\boldsymbol{u}}^2$	$\overline{\mathbf{p}} + \overline{\mathbf{f}} - \nabla \cdot \tau(\overline{\mathbf{u}})$; $\nabla \cdot \overline{\boldsymbol{u}} =$	0
	eddy-visco	osity $\longrightarrow \tau$ ($\overline{\boldsymbol{u}}) = -2\nu_t S(\overline{\boldsymbol{u}})$		
$\nu_t \approx$	$(C_m\delta)^2 D_m($	$\overline{(\overline{u})} \longrightarrow \{WA$	LE, Vreman, QR,	Sigma, S3PQF	۶, }
∂_t	$\overline{T} + (\overline{u} \cdot \nabla)$	$\overline{T} = \alpha \nabla^2 \overline{T} - $	$\nabla \cdot \boldsymbol{q}$ where	$q = \overline{uT} - \overline{u}$	T
	eddy-diffu	sivity	grad	lient model	
$q \approx -$	$-\alpha_t \nabla \overline{T}$	$(\equiv \boldsymbol{q}^{eddy})$	$m{q} pprox -rac{\delta^2}{12}m{0}$	$G \nabla \overline{T} (\equiv$	q ^{nl})

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Motivation 00	Preserving symmetries at discrete level	Portability and beyond 0	LES of RBC ●000	Conclusions
Probler	ns to model the SGS	heat flux ⁸		
∂	$_{t}\overline{\boldsymbol{u}}+(\overline{\boldsymbol{u}}\cdot\nabla)\overline{\boldsymbol{u}}=\nu\nabla^{2}\overline{\boldsymbol{u}}-\nabla\overline{\boldsymbol{\mu}}$	$ar{m{ au}}+ar{m{f}}- abla\cdot au(m{m{u}})$;	$ abla \cdot \overline{\boldsymbol{u}} = \boldsymbol{0}$	
	eddy-viscosity $\longrightarrow \tau$ (i	$\overline{\boldsymbol{u}}) = -2\nu_t S(\overline{\boldsymbol{u}})$		
$\nu_t \approx$	$= (C_m \delta)^2 D_m(\overline{u}) \longrightarrow \{WAI$	_E, Vreman, QR, Si	gma, S3PQR,.	}
∂	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla$	7 · q where q	$=\overline{uT}-\overline{u}\overline{T}$	
	eddy-diffusivity		a and the second	
q≈	$\alpha_t \nabla \overline{I} \qquad (\equiv \boldsymbol{q}^{eddy})$	entry et al.		27
0				

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Motivation 00	Preserving symmetries at discrete level	Portability and beyond O	LES of RBC 0●00	Conclusions 00
DNS	results at very	low <i>Pr</i> numbe	r	
Why?	scale separation grows as r	$\eta_{\kappa}/\eta_{\tau} = Pr^{3/4}.$		

 η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale

Motivation 00	Preserving symmetries at discrete level	Portability and beyond O	LES of RBC 0●00	Conclusions 00
DNS	results at very l	low <i>Pr</i> numbe	r	
Why?	scale separation grows as η_T : Obukhov-Corrsin so	$\eta_{K}/\eta_{T} = Pr^{3/4}$.	Here: $\eta_T \approx 5$	3.2η _K

DNS of a RB at $Ra = 7.14 \times 10^6$ and Pr = 0.005 (liquid sodium) $488 \times 488 \times 1280 \approx 305M$

Motivation 00	Preserving symmetries at discrete level 000	Portability and beyond O	LES of RBC 0●00	Conclusions 00
DNS	results at very l	ow <i>Pr</i> numbe	r	
Why?	scale separation grows as η_T : Obukhov-Corrsin sc	$\eta_{K}/\eta_{T} = Pr^{3/4}$.	Here: $\eta_T \approx 5$	53.2η _K

Motivation 00	Preserving symmetries at discrete level	Portability and beyond 0	LES of RBC 0●00	Conclusions
DNS	results at very l	ow <i>Pr</i> numbe	r	
Why?	scale separation grows as η η_T : Obukhov-Corrsin sc	$\eta_{K}/\eta_{T} = Pr^{3/4}$. Here η_{K} : Kolmogorov	lere: $\eta_T \approx 5$ w scale	53.2η _K

Motivation 00	Preserving symmetries at discrete level	Portability and beyond O	LES of RBC 0●00	Conclusions
DNS	results at very l	ow <i>Pr</i> numbe	r	
Why?	scale separation grows as η_T : Obukhov-Corrsin so	$\eta_{K}/\eta_{T} = Pr^{3/4}$.	Here: $\eta_T \approx 5$	53.2η _K

Motivation 00	Preserving symmetries at discrete level	Portability and beyond 0	LES of RBC 0●00	Conclusions 00
DNS	results at very l	ow <i>Pr</i> numbe	r	
Why?	scale separation grows as η_T : Obukhov-Corrsin sc	$\eta_{\kappa}/\eta_{\tau} = Pr^{3/4}$.	lere: $\eta_T \approx 5$ by scale	53.2η _K
		×2/		

Motivation 00	Preserving symmetries at discrete level	Portability and beyond O	LES of RBC 0●00	Conclusions 00
DNS	results at very	low <i>Pr</i> number	r	
		- 2/4		

Why? scale separation grows as $\eta_K / \eta_T = Pr^{3/4}$. Here: $\eta_T \approx 53.2\eta_K$ η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale

⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model* for *LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

Motivation 00	Preserving symmetries at discrete level	Portability and beyond 0	LES of RBC	Conclusions 00

LES results at very low Pr number

LES results at very low *Pr* number (on-going)

LES results at very low *Pr* number (on-going)

LES results at very low *Pr* number (on-going)

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
00		0	0000	•0
Conclud	ing remarks			

• Modeling the SGS heat flux, *q*, is the main difficulty for LES of buoyancy-driven flows

Motivation	Preserving symmetries at discrete level	Portability and beyond	LES of RBC	Conclusions
00		0	0000	•0
Conclud	ing remarks			

- Modeling the SGS heat flux, *q*, is the main difficulty for LES of buoyancy-driven flows
- Eddy-viscosity models work for RBC (at least for low-Pr) \checkmark

Motivation 00	Preserving symmetries at discrete level

Portability and beyond o LES of RBC 0000 Conclusions

Concluding remarks

- Modeling the SGS heat flux, *q*, is the main difficulty for LES of buoyancy-driven flows
- Eddy-viscosity models work for RBC (at least for low-Pr) \checkmark
- Ultimate regime of turbulence may be reached with LES at low-Pr \checkmark

Motivation 00	Preserving symmetries at discrete level 000

Portability and beyond

LES of RBC

Conclusions

Concluding remarks

- Modeling the SGS heat flux, *q*, is the main difficulty for LES of buoyancy-driven flows
- Eddy-viscosity models work for RBC (at least for low-Pr) \checkmark
- Ultimate regime of turbulence may be reached with LES at low-Pr \checkmark

On-going research:

- LES simulations at low-Pr and very large Ra
- Re-thinking standard CFD operators (*e.g* flux limiters^a, boundary conditions, CFL,...) to adapt them into an algebraic framework

^a N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022.

Preserving symmetries at discrete level

Thank you for your virtual attendance