
WORKSHOP

Direct and Large-Eddy Simulation 13

October 26th-29th 2022, Udine, Italy

AN ENERGY-PRESERVING UNCONDITIONALLY STABLE FRACTIONAL STEP

METHOD FOR DNS/LES ON COLLOCATED UNSTRUCTURED GRIDS

D. Santos, F.X. Trias, G. Colomer, A. Oliva
1 Heat and Mass Transfer Technological Center (CTTC)

Technical University of Catalonia, C/Colom 11, 08222 Terrassa (Barcelona), Spain
daniel.santos.serrano@upc.edu
francesc.xavier.trias@upc.edu
guillem.colomer@upc.edu
asensio.oliva@upc.edu

INTRODUCTION

A finite-volume discretization over unstructured meshes is

the most used formulation to solve Navier-Stokes equations

by many general purpose CFD packages codes as OpenFOAM

or ANSYS-Fluent. These codes work with collocated stencil

formulations, that is, once the equations are discretized, an

algorithm goes cell by cell computing the required quantities.

On the other hand, algebraic formulations maintain the

equations in matrix-vector form, and compute the required

quantities by using these matrices and vectors. A collocated

fully-conservative algebraic symmetry-preserving formulation

of incompressible Navier-Stokes equations was proposed by

Trias et. al. in [1], assuming n control volumes and m faces:

Ω
duc

dt
+C(us)uc = Duc − ΩGcpc, (1)

Mus = 0c, (2)

where uc ∈ R3n and pc ∈ Rn are the cell-centered velocity

and the cell-centered pressure, respectively. The staggered

quantities, such as us ∈ Rm are related to the cell-centered

quantities via an interpolation operator Γc→s ∈ Rm×3n:

us = Γc→suc. (3)

Finally, Ω ∈ R3n×3n is a diagonal matrix containing the cell

volumes, C(us) ∈ R3n×3n is the discrete convective operator,

D ∈ R3n×3n is the discrete diffusive operator, Gc ∈ R3n×n

is the cell-to-cell discrete gradient operator and M ∈ Rn×m

is the face-to-cell discrete divergence operator. The velocity

correction after applying the Fractional Step Method (FSM)

to the Navier-Stokes equations reads:

un+1
c = up

c − Γs→cGpn+1, (4)

where Γs→c ∈ R3n×m is the face-to-cell interpolator, which is

related to the cell-to-face interpolator via the volume matri-

ces Γs→c = Ω−1Γc→sΩs, and G ∈ Rm×n is the cell-to-face

gradient operator.

All the operators needed to formulate the equations can be

constructed using only five discrete ones: the cell-centered and

staggered control volumes (diagonal matrices), Ωc and Ωs, the

face normal vectors, Ns, the scalar cell-to-face interpolation,

Πc→s and the cell-to-face divergence operator, M. For more

details of these operators and its construction, the reader is

referred to [1]. Due to its simplicity, these operators can be

easily builded in existing codes, such as OpenFOAM [2].

The most popular open-source code used to solve Navier-

Stokes equations with LES modelization is OpenFOAM due

to its stability and robustness. However, as it was shown in

[3], this code introduces a large amount of numerical dissipa-

tion. In our opinion, this is not an appropiate approach for

DNS and LES simulations since this artificial dissipation in-

terferes with the subtle balance between convective transport

and physical dissipation. Hence, reliable numerical methods

for DNS/LES must be free of numerical dissipation (or, at

least, have an small amount), and, of course, unconditionally

stable, i.e. simulations must be stable regardless of the mesh

quality and resolution.

AN ENERGY-PRESERVING UNCONDITIONALLY STABLE

FSM

From our point of view, respecting the symmetries of these

differential operators is crutial in order to respect the physical

structure of the equations. For example, constructing G =

−ΩsM
T is essential to preserve kinetic energy [1], but it is also

mimicking the symmetries of the continuos level operators.

So, we do not only have physical arguments to do so, but also

mathematical ones.

The turbulence phenomenon arises from a balance be-

tween convective transport and diffusive dissipation. These

two physical processes are described (in its discrete form) by

C(us) and D, respectively. At continuous level, the convec-

tive operator is skew-symmetric, and the diffusive operator is

symmetric and negative-definite. If we retain these properties

at the discrete level (namely C(us) being a skew-symmetric

matrix, D being a symmetric negative-definite matrix and

G = −ΩsM
T ), the discrete convective operator is going to

transport energy from resolved scales of motion to others with-

out dissipating energy, as one should expect.

The utility of an algebraic formulation can be found, as an

example, in [4]. In that work, the matrix-vector formulation is

used in order to study the stability of the solution in terms of

the pressure gradient interpolation. To do so, the eigenvalues



of L − Lc were deeply studied (L = MG ∈ Rn×n is the

compact Laplacian operator whereas Lc = MΓc→sΓs→cG ∈
Rn×n is the collocated wide-stencil Laplacian operator), and

the cell-to-face interpolation that leads to an unconditionally

stable FSM turned out to be:

Πc→s = ∆−1
s ∆T

sc ∈ Rm×n, (5)

where ∆s ∈ Rm×m is a diagonal matrix containing the pro-

jected distances between two adjacent control volumes, and

∆sc ∈ Rn×m is a matrix containing the projected distance

between a cell node and its corresponding face. For details,

the reader is referred to [4].

With the construction of a reduced set of (algebraic) ker-

nels, these matrix operators can be constructed, along with

basic operations like matrix-vector product, and we can solve

the equations numerically using proper solvers.

PRELIMINARY RESULTS

In order to check the stability of the method, some tests

have been carried out with very coarse and very bad qual-

ity meshes. Figures 1 and 2 show an example of an air-filled

(Pr = 0.71) differentially heated cavity with aspect ratio 2

at Rayleigh number (based on the cavity height) of 106, re-

specting the symmetries of the operators and using (5) to

interpolate the pressure gradient:

Figure 1: (Top) Test mesh used to check the stability of the

method. (Bottom) Zoom at the top part of the mesh.

As you can see in Fig. 2, the method is stable, giving us

results and not blowing up the simulation. As we can expect

with such a bad quality mesh, the accuracy is not going to be

Figure 2: Temperature distribution obtained for Ra = 106.

very high. It is worth to mention that trying other interpo-

lations for the pressure gradient, such as using 1
2
weights will

blow up the simulation from the very beginning.

CONCLUSIONS AND FUTURE WORK

Respecting the symmetries of the differential operators at

the discrete level is essential to retain invariances from the

continuos level and preserve kinetic energy. Furthermore,

the interpolation of the pressure gradient from faces to cells

should be done with the correct interpolator (5) to obtain

stable solutions. The aim of this work is to solve Navier-

Stokes equations (1,2), from an algebraic point of view, while

preserving the symmetries of the differential operators [1]

and interpolating in the proper way the pressure gradient

[4]. To do so, we plan to study a set of DNS/LES cases

(Rayleigh-Bénard convection, Channel Flow...). The accuracy

and the preservation of energy due to the introduction of this

new interpolation will be tested. All the simulations will be

carried out on a new CFD code based on the fully-portable

algebra-based HPC2 framework [5].
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