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1 Introduction

A finite-volume discretization over unstructured meshes is the most used formula-
tion to solve Navier-Stokes equations by many general purpose CFD packages codes
such as OpenFOAM or ANSYS-Fluent. These codes work with collocated stencil
formulations, that is, once the equations are discretized, an algorithm goes cell by
cell computing the required quantities.

On the other hand, algebraic formulations maintain the discrete equations in
matrix-vector form, and compute the required quantities by using matrices and vec-
tors. A collocated fully-conservative algebraic symmetry-preserving formulation of
incompressible Navier-Stokes equations was proposed by Trias et. al. [1]. Assuming
n control volumes and m faces:

Ω
duc

dt
+C(us)uc = Duc −ΩGc pc, (1)

Mus = 0c, (2)

where uc ∈ IR3n and pc ∈ IRn are the cell-centered velocity and the cell-centered
pressure, respectively. The staggered quantities, such as us ∈ IRm are related to the
cell-centered quantities via an interpolation operator Γc→s ∈ IRm×3n:

us = Γc→suc. (3)

Finally, Ω ∈ IR3n×3n is a diagonal matrix containing the cell volumes, C(us) ∈
IR3n×3n is the discrete convective operator, D ∈ IR3n×3n is the discrete diffusive op-
erator, Gc ∈ IR3n×n is the cell-to-cell discrete gradient operator and M ∈ IRn×m is
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the face-to-cell discrete divergence operator. The velocity correction after applying
the Fractional Step Method (FSM) to the Navier-Stokes equations reads:

un+1
c = up

c −Γs→cGpn+1, (4)

where Γs→c ∈ IR3n×m is the face-to-cell interpolator, which is related to the cell-to-
face interpolator via the volume matrices Γs→c = Ω−1Γc→sΩs, and G ∈ IRm×n is the
cell-to-face gradient operator [1].

All the operators needed to formulate the equations can be constructed using only
five discrete ones: the cell-centered and staggered control volumes (diagonal matri-
ces), Ωc and Ωs, the face normal vectors, Ns, the scalar cell-to-face interpolation,
Πc→s and the cell-to-face divergence operator, M. For more details of these opera-
tors and its construction see [1]. Due to its simplicity, these operators can be easily
builded in existing codes, such as OpenFOAM [2]. However, as it was shown in [3],
this code introduces a large amount of numerical dissipation. In our opinion, this is
not an appropiate approach for DNS and LES simulations since this artificial dissi-
pation interferes with the subtle balance between convective transport and physical
dissipation. Hence, reliable numerical methods for DNS/LES must be free of nu-
merical dissipation (or, at least, have a small amount), and unconditionally stable,
i.e. simulations must be stable regardless of the mesh quality and resolution.

2 An energy-preserving unconditionally stable FSM

2.1 Conservation of energy

Left-multiplying eq. (1) by uT
c and summing the result with its transpose we obtain

the global discrete kinetic energy equation:

d
dt
||uc||2 = −uT

c (C(us)+C(us)
T )uc −uT

c (D+DT )uc

− uT
c ΩGc pc − pT

c GT
c Ωuc. (5)

Respecting the symmetries of these differential operators is crutial in order to re-
spect the physical structure of the equations. In absence of diffusion, that is D = 0,
energy must be preserved. This will happen, if and only if, the convective operator
is skew-symmetric and G = −Ω−1

s MT [1]. These two conditions are also mim-
icking the symmetries of the continuous level operators [4]. So, we do not only
have physical arguments to do so, but also mathematical ones. In fact, mathematical
arguments (continuous symmetry-preserving), directly imply discrete symmetry-
preserving and automatically conservation of energy, but the converse is not true.

The turbulence phenomenon arises from a balance between convective transport
and diffusive dissipation. These two physical processes are described (in its discrete
form) by C(us) and D, respectively. At continuous level, the convective operator is
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skew-symmetric, and the diffusive operator is symmetric and negative-definite. If we
retain these properties at the discrete level (namely C(us) being a skew-symmetric
matrix, D being a symmetric negative-definite matrix and G =−Ω−1

s MT ), the dis-
crete convective operator is going to transport energy from resolved scales of motion
to others without dissipating energy, as one should expect.

2.2 Stability of the pressure gradient interpolation

Due to the fact that the pressure gradient is computed at the faces and we need to
interpolate it back to the cells in order to correct our (collocated) velocity (see eq.
4), this interpolation can lead us to some instability issues (see eq. 5). This problem
was studied in [5], thus showing the utility of an algebraic formulation. In that work,
the matrix-vector formulation is used in order to study the stability of the solution in
terms of the pressure gradient interpolation. To do so, the eigenvalues of L−Lc were
deeply studied (L = MG ∈ IRn×n is the compact Laplacian operator whereas Lc =
MΓc→sΓs→cG ∈ IRn×n is the so-called collocated wide-stencil Laplacian operator),
and the cell-to-face interpolation that leads to an unconditionally stable FSM turned
out to be the volume weighted:

Πc→s = ∆
−1
s ∆

T
sc ∈ IRm×n, (6)

where ∆s ∈ IRm×m is a diagonal matrix containing the projected distances between
two adjacent control volumes, and ∆sc ∈ IRn×m is a matrix containing the projected
distance between a cell node and its corresponding face [5].

3 Test case: turbulent channel flow at Reτ = 395

In this section, the robustness and the accuracy of the method is tested in a channel
flow at Reτ = 395, using different meshes. The domain chosen to carry out the
simulations is the same as in Moser et. al. [7]: 2πx2xπ . All the meshes had a y+

around 1. Other interpolations used in our work are the midpoint interpolation ( 1
2

interpolation coefficients) and the linear interpolation.

3.1 Accuracy of the interpolator in high quality meshes

The mesh shown in Figure 1 was chosen to test the accuracy. It is stretched towards
y-direction. Figures 2 and 3 show the normalised mean velocity (in wall units) and
the < u′v′ > component of the Reynolds stress tensor. We compare the results ob-
tained against the DNS data obtained by Moser et. al.[7]. The results are very similar
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for the three interpolators. We expected this because for regular Cartesian meshes
all three interpolators collapse to the same one (midpoint), and if the stretching is
very soft, the mesh is almost regular and Cartesian (locally).

Fig. 1 64x64x64 mesh used to test our method with different interpolators.
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Fig. 2 Normalised mean velocity profile in wall
units for channel flow at Reτ = 395.
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Fig. 3 Normalised turbulent shear stress profile
−< u′v′ > in wall units at Reτ = 395.

3.2 Robustness in distorted meshes

Figure 4 shows the mesh chosen to test the robustness of the method. It is stretched
towards the beginning and the end, while having very long control volumes in the
center. As expected with this kind of meshes, the results are not even qualitatively
good (turbulence is not even triggered, the control volumes in the center filter any
kind of eddy), but the only one that converges to a solution is the volume weighted,
while the others were unstable.

Figure 5 shows a less distorted mesh, that could be used in daily simulations.
Even for this (not so bad) mesh, the linear interpolation is not able to trigger turbu-
lence. For the midpoint and the volume weighted interpolations, the results are very
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Fig. 4 Highly distorted mesh used to test the robustness of the method. Maxi-
mum aspect ratio is 250.

Fig. 5 Mesh which starts growing the control volumes at 1/3 of total length.
Maximum aspect ratio is 5.

similar, as shown in Figures 6 and 7 (results obtained with linear interpolation are
so inaccurate that are not shown here):
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Fig. 6 Normalised mean velocity profile in wall
units for channel flow at Reτ = 395.
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Fig. 7 Normalised turbulent shear stress profile
−< u′v′ > in wall units at Reτ = 395.

As expected, results are worse than those obtained with a regular Cartesian mesh,
but they are still reasonable. What can be surprising is that the midpoint and the
volume weighted interpolators seem to give the same results, while the linear inter-
polation, although it is converging, gives very bad results. A possible explanation
of this fact, taking into account also the results of section 3.2, is that while we start
stretching the mesh, the results are similar, until some point where the linear inter-
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polation starts failing, but the other two still give similar results. Then, under more
stretching, the midpoint fails while the volume weighted is unconditionally stable.

4 Conclusions and future work

An energy-preserving unconditionally stable fractional step method on collocated
grids has been presented. Three interpolators have been tested for the pressure gradi-
ent: volume weighted, linear and midpoint. All three seem to have the same accuracy
in high quality meshes. When distorting the mesh, the first one that loses accuracy
and eventually blows up is the linear. The midpoint seems to be more stable than the
linear, but it is still blowing up in highly distorted meshes, and the volume weighted
is unconditionally stable.

Future and ongoing work related to our method would be to test the accuracy of
the solution when varying progressively the distortion of the mesh, and to test it on
unstructured meshes. Furthermore, it would be also interesting to test the preserva-
tion of energy using different interpolators.
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