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1. Motivation of this work

Motivation: Is it possible to find an energy-preserving unconditionally stable frac-
tional step method on collocated grids for any mesh? Instead of changing randomly
the numerical schemes, the mesh or...
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2. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an

arbitrary collocated mesh

du,
dt

Q + C(us)uc = —Du. — QG.p,, (1)

Mug = 0. (2)

o p.=(p1,.y p,,)T € R" s the cell-centered pressure.

o uc. = (ug,up,u3)” € R¥ | where u; = ((uj)1, .., (u;)n) T are the vectors
containing the velocity components corresponding to the x;—spatial direction.

o us = ((us)1, .-, (us)m)™ € R™ is the staggered velocity.

@ The velocities are related via the interpolator from cells to faces
rc—>s S RmXSn — us = rc—>suc~
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3. Conservation of global kinetic energy

Global kinetic energy equation

dlluc||? — —uT

dt c (C(us) + CT(“S))UC - UZ(D + DT)UC

—u/QG.p,.—p!/ G QT u.. 3)

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:

e C(us) = —CT(uy), i.e, the convective operator should be skew-symmetric.
o (—QG.)T = Ml ., because Mug = 0..

Question: Can we find a mathematical reason to justify these relations, instead of
a physical one?
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Mimicking continuos properties

Maths Physics

! !

Differential geometry: k-forms Conservation of energy

Imposed by
physics!

(Continuous)  Algebraic topology: ‘ Discrete symmetry-

symmetry- k-chains preserving
preserving
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Mimicking continuos properties

T
A——B

Tp TTp

Ar—— Bn
Th

A and B are two vectorial spaces.

mp is a discretization operator.

T is a continuous operator.

Ap, Bp and Ty are the discrete counterparts of A, B and T, respectively.

We will require this diagram to be commutative.
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4. A stable pressure gradient interpolation

FSM iterative Poisson equation in collocated meshes

IR = ol —  offT =l = GE0T, (4)

where M. = Ml ._,sand G, = T,.G = —Q71 I, _MT are the collocated

c—S
divergence and the collocated gradient. Developing the correction in ul:

Z_l — Gcpl = Ug_z — Gepl — CNQ_l = =uf - GCZINJL (5)

So, the acumulated pressure at n iteration is:
n
pr=> Bl (6)
i=1

Introducing all this in (7) we obtain:

Lp™tt = MTsuP + (L — Lo)pl. (7)

C
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A stable pressure gradient interpolation

@ Mid-point scheme: ¢ = %(d)cl + ¢c2)

o Volume weighted scheme: ¢; = y-X4- 01 + 753 dco.

Vsl Vs2

Figure 1: Volume weighted volumes
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A stable pressure gradient interpolation

@ Stable solutions — Eigenvalues of L — L. negative.

@ This can be achieved by using the volume weighted scheme:

Meys = ;1AZ(—;3 (8)
where A; € R™*™ s a diagonal matrix containing the projected distances
between two adjacent control volumes, and A, € R™*" is a matrix
containing the projected distances between an adjacent cell node and its
corresponding face.

This problem was widely adressed in: D. Santos, J. Muela, N. Valle, F.X. Trias, On the
Interpolation Problem for the Poisson Equation on Collocated Meshes. 14th WCCM-
ECCOMAS Congress 2020, DOI: 10.23967/wccm-eccomas.2020.257.
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5. Test case: Turbulent channel flow Re, = 395

In order to check the stability and accuracy of the method, some tests have been
carried out:

@ Re, = 395.

e y' around 1.

@ Domain 5mx2xm, periodic x and z directions.

Figure 2: 64x64x64 mesh used.

D. Santos, F. X. Trias, G. Colomer, A. Oliva An energy-preserving unconditionally stable fractional ¢ 11 /18



Test case: Turbulent channel flow Re, = 395.
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Turbulent channel flow Re; = 395. High distorted mesh.
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Pressure gradient interpolated using a
volume weighted interpolator. MidPoint or
linear are blowing up the simulation.
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Turbulent channel flow Re; = 395. Progressive mesh
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Linear doesn't trigger turbulence.
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Turbulent channel flow Re, = 395. Center refinement

The three interpolators give the same (reasonable) results.
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Preliminary results on unstructured meshes.

b —

Highly distroted mesh. Temperature distribution.
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6. Conclusions

Accuracy and stability conclusions:

@ Three interpolators have been tested for the interpolation of the pressure gra-
dient from faces to cells: volume weighted, linear and midPoint interpolations.

@ All three seem to have the same accuracy in high quality meshes.

@ When distorting the mesh, the first one that looses accuracy and eventually
blows up is the linear interpolation.

@ The midPoint interpolation seems to be more stable than the linear, but it is
still blowing up in highly distorted meshes.

@ Volumetric interpolation is an unconditionally stable interpolation.

D. Santos, F. X. Trias, G. Colomer, A. Oliva An energy-preserving unconditionally stable fractional ¢ 17 /18



Conclusions

General conclusions

@ An energy-preserving unconditionally stable fractional step method on collo-
cated grids has been presented.

@ There are mathematical reasons beyond physical ones in order to preserve the
underlying symmetries of the differential operators.

@ The appearance of unphysical velocities is a common problem found in highly
distorted meshes, and it solved by means of interpolating the pressure gradient
using a volumetric scheme.

Future work:

@ |s there a moment when the midPoint interpolation blows up and the volumetric
still gives good results?

@ Test accuracy on unstructured meshes.

@ Test the accuracy of the solution when varying progressively the distortion of
the mesh.
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