
WORKSHOP

Direct and Large-Eddy Simulation 14

April 10-12 2024, Erlangen, Germany

ON A CONSERVATIVE SOLUTION TO CHECKERBOARDING: ALLOWING

NUMERICAL DISSIPATION ONLY WHEN AND WHERE NECESSARY

J.A. Hopman1, D. Santos1, F.X. Trias1, J. Rigola1
1 Heat and Mass Transfer Technological Center

Technical University of Catalonia, Carrer Colom 11, 08222 Terrassa (Barcelona), Spain.
jannes.hopman@upc.edu

INTRODUCTION

CFD codes with industrial applications commonly rely on

a collocated grid arrangement, which handles complex geome-

tries and unstructured meshes better than the staggered grid

arrangement, with the added benefit of allowing a computa-

tionally more efficient data structure. If a central-differencing

scheme is used to discretise the spatial differential operators,

a set of wide-stencil operators is obtained. The gradient and

divergence operator make use of a 3-wide stencil, creating a de-

coupling between the value of the central cell and its resulting

differential value. The Laplacian operator in turn makes use of

a 5-wide stencil, similarly disconnecting the central cell from

its direct neighbours. In incompressible flows, this odd-even

decoupling can lead to spurious pressure modes. These modes

will persist because they are invisible to the gradient operator,

offering no feedback onto the collocated velocity field. This

problem is commonly known as the checkerboard problem.

The most widely used class of methods to solve this prob-

lem is through a weighted interpolation method (WIM), of

which the pressure-weighted interpolation method, attributed

to Rhie and Chow [1], is the most well-known example. This

method establishes a coupling between directly neighbouring

cells by adding a correction term which includes a cell-to-face

pressure gradient. Usually this connection is constructed im-

plicitly through a compact-stencil Laplacian operator, which

additionally decreases computational complexity and cost.

The application of these correction term leads to a non-zero

discrete divergence at either the cell- or face-centered veloci-

ties. This, in turn, unavoidably introduces numerical dissipa-

tion to the evolution of kinetic energy, through the convective

or pressure term [2].

When using symmetry-preserving methods for collocated

grids, this numerical error remains as the largest source of nu-

merical dissipation [3]. This error can at times be of the same

magnitude as the applied LES models and therefore greatly in-

terfere with turbulence modelling and high fidelity simulations

[4]. To decrease the order of the pressure error introduced

by the compact-stencil Laplacian, these works made use of

a pressure predictor in the momentum prediction equation.

Although greatly reducing the numerical dissipation, this ad-

justment makes the method more prone to checkerboarding,

especially in case a small time-step is used or if the solution

reaches a steady state.

The work of Hopman et al. [5] introduced a method that

is able to dynamically change the pressure predictor, allowing

more numerical dissipation if the solution starts showing oscil-

lations. This was achieved by first answering a question that

has been avoided in existing literature that discusses this topic:

How should checkerboarding be quantified? By introducing a

global, normalised, non-dimensional checkerboard coefficient,

the pressure prediction could be regulated. This work explores

other possible uses for this coefficient, whilst also introducing

a local coefficient. By doing so, numerical dissipation can be

limited, not only in when, but also in where it is allowed.

GLOBAL SCALAR ADJUSTMENT

In [5] the checkerboard coefficient was defined as:

Ccb =
pT
c (L− Lc)pc

pT
c Lpc

, (1)

where Lc and L denote the wide- and compact-stencil Lapla-

cian, respectively. The coefficient ranges between 0 (smooth)

and 1 (pure checkerboard). For this coefficient to regulate the

strength of the coupling in the pressure field, there are two

options (denoted with superscripts a and b) to apply Ccb to

the projection method:

up
c = ∆tR (uc,us)− (1− Ca

cb)Gcp̃
n
c , (2)

Lcp̃
′
c − Cb

cb (L− Lc) p̃
′
c = Mcu

p
c , (3)

un+1
c = up

c −Gcp̃
′
c, (4)

un+1
s = Γcsu

n+1
c − Cb

cb (I − ΓcsΓsc)Gp̃′
c, (5)

where the notation of [3] has been used. Option (a) was tested

in [5] and gave good results, in which the pressure predictor

was closer to p̃n
c in the absence of checkerboarding and started

to decrease in cases oscillations were detected in the domain.

Option (b) involves solving a Poisson equation with a denser

Laplacian which is usually avoided, however, equation (3) can

be rewritten as:

Lp̃
′(k+1)
c =

1

Cb
cb

Mcu
p
c −

Cb
cb − 1

Cb
cb

Lcp̃
′(k)
c , (6)

which finds the same solution but treats the wide-stencil

Laplacian explicitly.



LOCAL SCALAR ADJUSTMENT

To apply a local adjustment to the projection method,

which only acts in areas of the domain where oscillations are

detected, a new definition for the checkerboard coefficient has

to be used. Similar to equation (1), the local checkerboard

coefficient is a vector with an entry per cell i given by:

[γcb]i =

{
[(L−Lc)pc]i

[Lpc]i
if [Lpc]i ̸= 0,

0 if [Lpc]i = 0.
(7)

As before, this opens up two options (denoted with super-

scripts α and β) to adjust the projection method, which are

less obvious than before. Option (α) regulates the inclusion

of a pressure gradient in the momentum prediction equation:

up
c = ∆tR (uc,us)− (I − γα

cb)Gcp̃
n
c . (8)

Applying this coefficient directly to the pressure field instead,

as Gc
(
I − γα

cb

)
p̃n
c , will have the effect of an uneven predictor

pressure with false gradients, decreasing the overall accuracy

of the predictor velocity. However, applying the coefficient as

done in equation (8) makes it difficult to calculate the instan-

taneous pressure field at time-step n + 1, and a new variable

ϕc is introduced which can be calculated as:

ϕn+1
c = Gcp̃

n+1
c = (I − γα

cb)Gcp̃
n
c +Gcp̃

′
c. (9)

Some applications require the calculation of the instantaneous

pressure field, in which case every few time-steps the algorithm

has to update the fields without using option (α). Option

(β), again, involves an adjustment through combining the

compact- and wide-stencil Laplacian operators. This combi-

nation is not straight-forward, and to maintain the symmetry

of the operator the adjustment has to be made as follows:

L = Lc + L = −M
(
Ωs + ΓcsΩΓT

cs

)
MT (10)

with:

Ωs = diag(Γcsγ
β
cb)Ωs, (11)

Ω = Ω− I3 ⊗
(
diag(γβ

cb)Ωc

)
. (12)

Again, to avoid solving a Poisson equation with a wide-stencil

Laplacian, the equation can also be solved as:

Lp̃
′(k+1)
c = Mcu

p
c − Lcp̃

′(k)
c , (13)

reaching a solution to p̃′
c iteratively.

NUMERICAL TESTS

All together, four methods are described in this work,

method (a), (b), (α) and (β). The latter three methods are

newly introduced and are tested and compared to the results

form method (a) given in [5]. To do so, a two-dimensional

Taylor-Green vortex was used to test the numerical dissipa-

tion of each method, whereas a lid-driven cavity is used to test

the checkerboard suppressing qualities of the solvers. Finally,

a turbulent channel flow is used to test the solver in unsteady

conditions by measuring the kinetic energy budgets. The re-

sults will be compared to method (a) to show if additional

gains can be made in conservational properties, by dynami-

cally regulating checkerboarding not only in time, but also in

space.
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