On a Conservative Solution to Checkerboarding:

Allowing Numerical Dissipation Only When and Where Necessary

J.A. Hopman, L.P.J. Beerten, D. Santos, F.X. Trias, J. Rigola

Centre Tecnològic de Transferència de Calor UNIVERSITAT POLITÈCNICA DE CATALUNYA Incompressible flow: Pressure-Velocity coupling Projection method p-Poisson Incompressible flow: Pressure-Velocity coupling Projection method p-Poisson Collocated grid: Grad(p) $\checkmark U$ Wide-stencil Laplacian $\rightarrow L_c = M_c G_c$

Incompressible flow: Pressure-Velocity coupling Projection method p-Poisson Collocated grid: Grad(p) $\checkmark U$ U Wide-stencil Laplacian $\rightarrow L_c = M_c G_c$

Wide	stencil	Compac	t stencil
DIM	WIM	DIM	
$\mathbf{u}_{c}^{p}=\mathcal{F}\left(\mathbf{u}_{c},\mathbf{u}_{s} ight)$			
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$G_c^p - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1}$	$= M_c \mathbf{u}_c^p$	$L\tilde{\mathbf{p}}_{c}^{\prime} =$	$M_c \mathbf{u}_c^{p*}$
		$\widetilde{\mathbf{p}}_{c}^{n+1} =$	$ ilde{\mathbf{p}}_{c}^{p}+ ilde{\mathbf{p}}_{c}^{\prime}$
$\mathbf{u}_{c}^{n+1}=\mathbf{u}_{c}^{n+1}$	$G_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{s}^{n+1}=\Gamma_{cs}\mathbf{v}_{s}$	$\mathbf{u}_c^p - G \tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$	
$\Gamma_{cs}\mathbf{u}_{c}^{n+1}$	$\Gamma_{cs}\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$	$\Gamma_{sc}\mathbf{u}_s^{n+1}$	

Wide stencil		Compact stencil	
DIM	WIM	DIM	WIM
$\mathbf{u}_{c}^{p}=\mathcal{F}$		$(\mathbf{u}_c,\mathbf{u}_s)$	
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$-G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_c' = M_c \mathbf{u}_c^{p*}$	
		$ ilde{\mathbf{p}}_{c}^{n+1}= ilde{\mathbf{p}}_{c}^{n+1}$	$ ilde{\mathbf{p}}_{c}^{p}+ ilde{\mathbf{p}}_{c}^{\prime}$
$\mathbf{u}_{c}^{n+1}=\mathbf{u}_{c}^{p}$	$g - G_c \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{s}^{n+1} = \Gamma_{cs}\mathbf{u}$	$\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$
$\Gamma_{cs} \mathbf{u}_c^{n+1}$	$\Gamma_{cs}\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$	$\Gamma_{sc}\mathbf{u}_s^{n+1}$	$\mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$

Wide stencil		Compact stencil	
DIM	WIM	DIM WIM	
$\mathbf{u}_{c}^{p}=\mathcal{F}\left(\mathbf{u}_{c},\mathbf{u}_{s} ight)$			
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$g - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*}$	
		$ ilde{\mathbf{p}}_{c}^{n+1} =$	$ ilde{\mathbf{p}}_{c}^{p}+ ilde{\mathbf{p}}_{c}^{\prime}$
$\mathbf{u}_{c}^{n+1}=\mathbf{u}_{c}^{n}$	$\hat{\mathbf{g}} - G_c \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{s}^{n+1}=\Gamma_{cs}\mathbf{u}_{s}$	$\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$
$\Gamma_{cs} \mathbf{u}_c^{n+1}$	$\Gamma_{cs}\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$	$\Gamma_{sc}\mathbf{u}_s^{n+1}$	$\mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$

Wide stencil		Compact stencil	
DIM	WIM	DIM WIM	
	$\mathbf{u}_{c}^{p}=\mathcal{F}$	$\mathbf{T}(\mathbf{u}_c,\mathbf{u}_s)$	
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$g - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*}$	
		$ ilde{\mathbf{p}}_{c}^{n+1} =$	$ ilde{\mathbf{p}}_{c}^{p}+ ilde{\mathbf{p}}_{c}^{\prime}$
$\mathbf{u}_{c}^{n+1}=\mathbf{u}$	$\mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{s}^{n+1}=\Gamma_{cs}\mathbf{u}_{s}$	$\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} = \ \Gamma_{cs} \mathbf{u}_{c}^{n+1}$	$\mathbf{u}_s^{n+1} = \\ \Gamma_{cs} \mathbf{u}_c^p - G \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{c}^{n+1}=\ \Gamma_{sc}\mathbf{u}_{s}^{n+1}$	$\mathbf{u}_c^{n+1} = \ \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$

Convective error Not strictly dissipative

Wide stencil		Compact stencil	
DIM	WIM	DIM	WIM
$\mathbf{u}_{c}^{p}=\mathcal{F}\left(\mathbf{u}_{c},\mathbf{u}_{s} ight)$			
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$g - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_c' = M_c \mathbf{u}_c^{p*}$	
		$\widetilde{\mathbf{p}}_{c}^{n+1} =$	$ ilde{\mathbf{p}}_{c}^{p}+ ilde{\mathbf{p}}_{c}^{\prime}$
$\mathbf{u}_c^{n+1} = \mathbf{u}$	$_{c}^{p}-G_{c}\tilde{\mathbf{p}}_{c}^{n+1}$	$\mathbf{u}_{s}^{n+1}=\Gamma_{cs}\mathbf{u}_{s}$	$\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} = \ \Gamma_{cs} \mathbf{u}_{c}^{n+1}$	$\mathbf{u}_s^{n+1} = \\ \Gamma_{cs} \mathbf{u}_c^p - G \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{c}^{n+1} = \ \Gamma_{sc}\mathbf{u}_{s}^{n+1}$	$\mathbf{u}_c^{n+1} = \ \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$

Convective error Not strictly dissipative

Wide stencil		Compact stencil	
DIM	WIM	DIM WIM	
	$\mathbf{u}_{c}^{p}=\mathcal{F}$	$\mathbf{T}(\mathbf{u}_c,\mathbf{u}_s)$	
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$g - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*}$	
		$\widetilde{\mathrm{p}}_{c}^{n+1} =$	$ ilde{\mathbf{p}}_{c}^{p}+ ilde{\mathbf{p}}_{c}^{\prime}$
$\mathbf{u}_{c}^{n+1}=\mathbf{u}_{c}^{n+1}$	$_{c}^{p}-G_{c}\tilde{\mathbf{p}}_{c}^{n+1}$	$\mathbf{u}_{s}^{n+1}=\Gamma_{cs}\mathbf{u}_{s}$	$\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} = \ \Gamma_{cs} \mathbf{u}_{c}^{n+1}$	$\mathbf{u}_s^{n+1} = \\ \Gamma_{cs} \mathbf{u}_c^p - G \tilde{\mathbf{p}}_c^{n+1}$	$\mathbf{u}_{c}^{n+1}=\ \Gamma_{sc}\mathbf{u}_{s}^{n+1}$	$\mathbf{u}_c^{n+1} = \\ \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$
Obeelerbeerding		Crossething	

Convective error Not strictly dissipative

Smoothing

Wide stencil		Compact stencil	
DIM	WIM	DIM	WIM
	$\mathbf{u}_{c}^{p}=\mathcal{F}$	$(\mathbf{u}_c,\mathbf{u}_s)$	
		$\mathbf{u}_{c}^{p*}=\mathbf{u}$	$\mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_c' = M_c \mathbf{u}_c^{p*}$	
		$ ilde{\mathbf{p}}_{c}^{n+1}$ =	= $ ilde{\mathbf{p}}_c^p + ilde{\mathbf{p}}_c'$
$\mathbf{u}_c^{n+1} = \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$		$\mathbf{u}_s^{n+1}=\Gamma_c$	$\mathbf{u}_s \mathbf{u}_c^p - G \tilde{\mathbf{p}}_c^{n+1}$
$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$
$\Gamma_{cs}\mathbf{u}_{c}^{n+1}$	$\Gamma_{cs}\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$	$\Gamma_{sc}\mathbf{u}_s^{n+1}$	$\mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$
Checkerboarding	Convective error Not strictly dissipative	Smoothing	Pressure error -Strictly dissipative* -L computationally favourab

-Allows error order reduction

Wide stencil		Compact stencil	
DIM	WIM	DIM	WIM
	$\mathbf{u}_{c}^{p}=\mathcal{F}$	$(\mathbf{u}_c,\mathbf{u}_s)$	
		$\mathbf{u}_{c}^{p*}=\mathbf{u}_{c}^{p}$	$G - G_c \tilde{\mathbf{p}}_c^p$
$L_c \tilde{\mathbf{p}}_c^{n+1} = M_c \mathbf{u}_c^p$		$L\tilde{\mathbf{p}}_{c}' = M_{c}\mathbf{u}_{c}^{p*}$	
		$ ilde{\mathbf{p}}_{c}^{n+1} = ilde{\mathbf{p}}_{c}^{p} + ilde{\mathbf{p}}_{c}^{\prime}$	
$\mathbf{u}_c^{n+1} = \mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$		$\mathbf{u}_s^{n+1} = \Gamma_{cs} \mathbf{u}_c^p - G \tilde{\mathbf{p}}_c^{n+1}$	
$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{s}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$	$\mathbf{u}_{c}^{n+1} =$
$\Gamma_{cs}\mathbf{u}_{c}^{n+1}$	$\Gamma_{cs}\mathbf{u}_c^p - G\tilde{\mathbf{p}}_c^{n+1}$	$\Gamma_{sc}\mathbf{u}_{s}^{n+1}$	$\mathbf{u}_c^p - G_c \tilde{\mathbf{p}}_c^{n+1}$
Checkerboarding	Convective error Not strictly dissipative	Smoothing	Pressure error -Strictly dissipative* -L computationally favourable -Allows error order reduction

 $\Gamma_{cs}\Gamma_{sc}G\longrightarrow G$

 $\mathbf{p}_c = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$ $\mathbf{p}_c^- = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$

$$\mathbf{p}_{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{c}^{-} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{p}_{c}^{T} \mathbf{p}_{c}^{-} = 0$$

$$\mathbf{p}_{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{c}^{-} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{p}_{c}^{T} \mathbf{p}_{c}^{-} = 0$$

$$C^{cb} = 1 - \frac{\|G_c \mathbf{p}_c\|}{\|G\mathbf{p}_c\|}$$
$$= 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$
$$= \frac{\mathbf{p}_c^T (L - L_c) \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

$$\mathbf{p}_{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{c}^{-} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{p}_{c}^{T} \mathbf{p}_{c}^{-} = 0$$

$$C^{cb} = 1 - \frac{\|G_c \mathbf{p}_c\|}{\|G\mathbf{p}_c\|} \qquad \|\alpha_d\| = \alpha$$
$$= 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$
$$= \frac{\mathbf{p}_c^T (L - L_c) \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

$$\|\alpha_d\| = \alpha_d^T \Omega_d \alpha_d$$

$$\mathbf{p}_{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{c}^{-} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{p}_{c}^{T} \mathbf{p}_{c}^{-} = 0$$

$$C^{cb} = 1 - \frac{\|G_c \mathbf{p}_c\|}{\|G\mathbf{p}_c\|} \qquad \|d$$
$$= 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} \qquad L$$
$$= \frac{\mathbf{p}_c^T (L - L_c) \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

$$\|\alpha_d\| = \alpha_d^T \Omega_d \alpha_d$$
$$L = MG = G^T \Omega_s G, \qquad L_c = M_c G_c = G_c^T \Omega G_c$$

$$\mathbf{p}_{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{c}^{-} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{p}_{c}^{T} \mathbf{p}_{c}^{-} = 0$$

$$C^{cb} = 1 - \frac{\|G_c \mathbf{p}_c\|}{\|G\mathbf{p}_c\|}$$
$$= 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$
$$= \frac{\mathbf{p}_c^T (L - L_c) \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

$$\begin{array}{rclcrcrcrcrcrc} G\mathbf{p}_c = & \begin{bmatrix} 0 & 1 & -1 & -1 & 1 & 0 \end{bmatrix} \\ G_c\mathbf{p}_c = & \begin{bmatrix} 0 & \frac{1}{2} & 0 & -1 & 0 & \frac{1}{2} \end{bmatrix} \end{array}$$

$$\mathbf{p}_{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$
$$\mathbf{p}_{c}^{-} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \end{bmatrix}$$
$$\mathbf{p}_{c}^{T} \mathbf{p}_{c}^{-} = 0$$

$$C^{cb} = 1 - \frac{\|G_c \mathbf{p}_c\|}{\|G\mathbf{p}_c\|}$$
$$= 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$
$$= \frac{\mathbf{p}_c^T (L - L_c) \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

$$G\mathbf{p}_{c} = \begin{bmatrix} 0 & 1 & -1 & -1 & 1 & 0 \end{bmatrix}$$
$$G_{c}\mathbf{p}_{c} = \begin{bmatrix} 0 & \frac{1}{2} & 0 & -1 & 0 & \frac{1}{2} \end{bmatrix}$$

$$C^{cb}(\mathbf{p}_{c}) = 1 - \frac{\|G_{c}\mathbf{p}_{c}\|}{\|G\mathbf{p}_{c}\|} = \frac{5}{8}$$

Global checkerboarding coefficient

Global scalar Non-dimensionalised Normalised [0, 1] Able to detect local oscillations

Global checkerboarding coefficient

Global scalar Non-dimensionalised Normalised [0, 1] Able to detect local oscillations

Global checkerboarding coefficient

1

 θ_p

0

 $-C^{cb}$

Local checkerboarding coefficient

$$[\boldsymbol{\gamma}_{c}^{cb}]_{i} = \frac{[\boldsymbol{\Pi}_{sc} \| \boldsymbol{G} \mathbf{p}_{c} \|]_{i}}{[\| \boldsymbol{G}_{c} \mathbf{p}_{c} \|]_{i}}$$

Hybrid Laplacian operator

$$\gamma_s^{cb} = \Pi_{cs} \gamma_c^{cb}$$
$$\gamma_c^{cb} = I_3 \otimes \gamma_c^{cb}$$

$$L_{H} = M_{c}(I - \gamma^{cb})G_{c} + M\gamma^{cb}_{s}G$$
$$G_{H} = \Gamma_{cs}(I - \gamma^{cb})G_{c} + \gamma^{cb}_{s}G$$
$$L_{H} = MG_{H}$$

Global coefficient can be used similarly, by:

 $\gamma^{cb} = C^{cb}I$

Hybrid Laplacian operator

$$\gamma_s^{cb} = \Pi_{cs} \gamma_c^{cb}$$
$$\gamma_c^{cb} = I_3 \otimes \gamma_c^{cb}$$

$$L_{H} = M_{c}(I - \gamma^{cb})G_{c} + M\gamma^{cb}_{s}G$$
$$G_{H} = \Gamma_{cs}(I - \gamma^{cb})G_{c} + \gamma^{cb}_{s}G$$
$$L_{H} = MG_{H}$$

Global coefficient can be used similarly, by: $\gamma^{cb} = C^{cb} I \label{eq:global}$

 $[\gamma^{\mathbf{cb}}]_{\mathbf{i}} < [\gamma^{\mathbf{cb}}]_{\mathbf{j}}$

Possible applications

$$\mathbf{u}_{c}^{p} = \mathcal{F}(\mathbf{u}_{c}, \mathbf{u}_{s})$$
$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \gamma^{cb} [G_{c} \tilde{\mathbf{p}}_{c}]^{n}$$
$$L_{H} \tilde{\mathbf{p}}_{c}' = M_{c} \mathbf{u}_{c}^{p*}$$
$$\mathbf{u}_{s}^{n+1} = \Gamma_{cs} \mathbf{u}_{c}^{p*} - G_{H} \tilde{\mathbf{p}}_{c}'$$
$$\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}'$$
$$[G_{c} \tilde{\mathbf{p}}_{c}]^{n+1} = \gamma^{cb} [G_{c} \tilde{\mathbf{p}}_{c}]^{n} + G_{c} \tilde{\mathbf{p}}_{c}'$$

Possible applications

$$\mathbf{u}_{c}^{p} = \mathcal{F}(\mathbf{u}_{c}, \mathbf{u}_{s})$$
$$\mathbf{u}_{c}^{p*} = \mathbf{u}_{c}^{p} - \gamma^{cb} [G_{c} \tilde{\mathbf{p}}_{c}]^{n}$$
$$L_{H} \tilde{\mathbf{p}}_{c}' = M_{c} \mathbf{u}_{c}^{p*}$$
$$\mathbf{u}_{s}^{n+1} = \Gamma_{cs} \mathbf{u}_{c}^{p*} - G_{H} \tilde{\mathbf{p}}_{c}'$$
$$\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}'$$
$$[G_{c} \tilde{\mathbf{p}}_{c}]^{n+1} = \gamma^{cb} [G_{c} \tilde{\mathbf{p}}_{c}]^{n} + G_{c} \tilde{\mathbf{p}}_{c}'$$

Taylor-Green vortex

Lid-driven cavity

Local checkerboard coefficient

Lid-driven cavity pressure

Results – Taylor-Green vortex

Results – Taylor-Green vortex

Results – Lid-driven cavity

Conclusions

Local quantification method developed Different possible usages demonstrated Practical applications seem limited

- Hybrid L is costly
- Local p^p seems erratic

Thanks for attending!

Any questions?