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Heat and Mass Transfer Technological Center (CTTC)

Technical University of Catalonia, Terrassa, Spain
{daniel.santos.serrano, francesc.xavier.trias, jannes.hopman, cdavid.perez.segarra} @upc.edu

INTRODUCTION

The Navier-Stokes equations for Newtonian, incompressible

flows in dimensionless primitive variables read:

∂u

∂t
+ (u · ∇)u =

1

Re
∆u−∇p, (1a)

∇ · u = 0, (1b)

where Re represents the dimensionless Reynolds number.

A fully-conservative finite-volume discretization, maintaining

the symmetries of the differential operators for collocated un-

structured meshes, was firstly introduced in [1]. Assuming

there are n control volumes and m faces:

Ω
duc

dt
+ C (us)uc + Duc + ΩGcpc = 0c, (2a)

Mus = 0c, (2b)

where pc = (p1, p2, . . . , pn)T ∈ Rn and uc ∈ R3n are the

cell-centered pressure and collocated velocity fields, respec-

tively. The subindices c and s indicate if the variables are

cell-centered or staggered at the faces. To verify mass conser-

vation within each control volume, a velocity field is defined

at the faces us =
(
(us)1, (us)2, (us)3, . . . , (us)m

)T
∈ Rm.

Quantities defined at cells and at faces are related using an

interpolator from cells to faces Γc→s ∈ Rm×3n:

us ≡ Γc→suc. (3)

The matrices Ω ∈ R3n×3n, C (us) ∈ R3n×3n and D ∈ R3n×3n

are block diagonal matrices given by

Ω = I3 ⊗ Ωc, C (us) = I3 ⊗ Cc (us) , D = I3 ⊗ Dc, (4)

where I3 ∈ R3×3 is the identity matrix and Ωc ∈ Rn×n is

a diagonal matrix containing the cell-centered control vol-

umes. Cc (us) ∈ Rn×n and Dc ∈ Rn×n are the cell-centered

convective and diffusive operators for a discrete scalar field,

respectively. Finally, Gc ∈ R3n×n is the discrete gradient op-

erator, and the matrixM ∈ Rn×m is the face-to-center discrete

divergence operator.

The 3−dimensional interpolator from cells to faces Γc→s is

constructed as follows:

Γc→s = N(I3 ⊗Πc→s), (5)

where Πc→s ∈ Rm×n is the scalar cell-to-face interpolator,

and N = (Ns,xNs,yNs,z) ∈ R3m×m, where Ns,i ∈ Rm×m is a

diagonal matrix containing the xi spatial components of the

face normal vectors.

Only five operators were needed to build this formulation:

the cell-centered and staggered control volumes, Ωc and Ωs

respectively, the face normal vectors Ns, the scalar cell-to-face

interpolation operator Πc→s, and the cell-to-face divergence

operator M. This simplicity not only eases the construction

of the required operators but also improves the portability of

a code developed within this framework, as demonstrated in

[2]. The global kinetic energy ||uc||2 is conserved if [1]:

C (us) = −C (us)
T , (6a)

− (ΩGc)
T = MΓc→s, (6b)

relating the gradient operator with the divergence operator

and assuming the convective operator to be skew-symmetric.

If Lc = McGc is used to build the Poisson equation, the global

kinetic energy is perfectly conserved. However, the well-known

checkerboard problem is found with this approach. Alterna-

tively, the use of L = MG will be discussed in this work.

AN ENERGY-PRESERVING UNCONDITIONALLY STABLE

PISO ALGORITHM

Assuming either explicit or implicit time integration, spa-

tially discrete momentum equation (2a) can be rewritten as

follows:

Suc = r− Gcpc, (7)

where S ∈ R3n×3n is the coefficient matrix after applying

a discretization method (such as Finite Volume Method), and

r ∈ R3n×1 is a vector containing all the explicit terms apart

from the pressure gradient. The coefficients are all known once

the discretization procedure is selected.

By treating the pressure gradient as an explicit source and

solving for the velocity, the momentum predictor is obtained:

u∗
c = S−1r− S−1Gcp

n
c . (8)

Note that the momentum predictor u∗
c does not satisfy the

continuity equation. To ensure so, a corrector step must be

performed. The diagonal coefficients of S will be extracted in

a diagonal matrix A (which will be easily invertible), and the

off-diagonal coefficients will be keeped in a matrix H′. Then,

it is assumed that the diagonal matrix is acting on a new

corrected velocity u∗∗
c while the off-diagonal part is acting on

the predictor velocity u∗
c .



The final algorithm reads [3]:

u∗
c = S−1r− S−1Gcpc, (9a)

MÃ−1Gp∗
c = MΓc→sA

−1(r−H′u∗
c) −→ p∗

c , (9b)

u∗∗
c = A−1(r−H′u∗

c)−A−1Gcp
∗
c , (9c)

u∗∗
s = Γc→sA

−1(r−H′u∗
c)− Ã−1Gp∗

c . (9d)

Here, Ã−1 = diag(Πc→svec(A
−1
c )) and and A = I3 ⊗ Ac

(the matrix A has three equal (diagonal) blocks). The PISO

algorithm iterates through the corrector steps until the desired

level of convergence is achieved. In this context, the utilization

of the compact Laplacian operator L to mitigate checkerboard

problems is assumed. Additionally, an (artificial) contribution

to the kinetic energy will be introduced:

pT
c (MÃ−1G−McA

−1Gc)pc = pT
c (L− Lc)pc. (10)

Ideally, the contribution of this term should be negative and

maintained as small as possible to avoid introducing energy

into our system, thereby preventing the simulation from desta-

bilizing. At this point, note that each projection method that

lead the equations to be solved in this way will encounter

the same problem, for example, the classical Fractional Step

Method [1], which is similar to the PISO algorithm but with

no predictor step and corrector iterations.

GEOMETRICAL CONDITIONS OF THE PROJECTION

METHOD IN ORDER TO BE UNCONDITIONALLY STABLE

Theorem.

Let us assume a general 2D or 3D mesh is constructed such

that each control volume satisfies:

• 1. Vk =
∑

f Ṽk,fn
2
i,f , ∀k ∈ {1, ..., n}, i ∈ {x, y, z},

• 2.
∑

f Ṽk,fni,fnj,f = 0, ∀k ∈ {1, ..., n}, i, j ∈
{x, y, z}, i ̸= j.

Then, L−Lc is positive definite as long as the chosen interpo-

lator is the volume weighted one (this is the unique possible

choice of interpolator, for both Gcpc in the velocity correction

equation and in the computation of Ã). The converse is also

true.

The volume weighted interpolator was introduced in [4],

and can be constructed in any mesh as follows:

Πc→s = ∆−1
s ∆T

sc, (11)

where ∆s ∈ Rm×m is a diagonal matrix containing the pro-

jected distances between two adjacent control volumes, and

∆sc ∈ Rm×n is a matrix containing the projected distances

between an adjacent cell node and its corresponding face.

Fig.1 shows a representation of these distances.

Some consequences of the previous theorem are the follow-

ing ones:

• Square and cubic meshes are stable when using the vol-

ume weighted interpolator even for highly distorted con-

figurations.

• Triangular 2D meshes are stable when using the volume

weighted interpolator and locating the cell-node at the

circumcenter, even for highly distorted configurations,

but tetrahedral meshes are not unconditionally stable.
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Figure 1: δni are the components of ∆s, while the components

of ∆sc would be calculated in the same way but taking the

distance between a control volume and their corresponding

face centers.

CONCLUSIONS

Necessary and sufficient conditions in order to build an en-

ergy preserving unconditionally stable projection method on

collocated unstructured grids are given in this work. Further-

more, different types of grids will be discussed in order to

assess which are unconditionally stable even for highly dis-

torted cases.
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