Mesh constraints for an energy preserving

unconditionally stable projection method on collocated
unstructured grids

D. Santos, F.X. Trias, J.A. Hopman, C.D. Pérez-Segarra

Heat and Mass Transfer Technological Center,
Technical University of Catalonia, C/Colom 11, 08222 Terrassa (Barcelona)

10-12 April 2024, DLES 2024, Erlangen, Germany

e O

Centre Tecnologic de Transferéncia de Calor
UNIVERSITAT POLITECNICA DE CATALUNYA

Daniel Santos 1/17



Index

@ Symmetry-Preserving unconditionally stable discretization of NS equations on
collocated unstructured grids.

© Conservation of global kinetic energy

© Summary and conclusions

Daniel Santos 2/17



e

Figure 1: Collocated arrangement

@ LES modelling — Framework to do DNS/LES modelling on complex
geometries:

Daniel Santos 3/17



e

Figure 1: Collocated arrangement

@ LES modelling — Framework to do DNS/LES modelling on complex
geometries:

o Free of Checkerboard

Daniel Santos 3/17



G

Figure 1: Collocated arrangement

@ LES modelling — Framework to do DNS/LES modelling on complex
geometries:

o Free of Checkerboard
o Free of artificial numerical dissipation — Only dissipation from the LES model

Daniel Santos 3/17



G

Figure 1: Collocated arrangement

@ LES modelling — Framework to do DNS/LES modelling on complex
geometries:
o Free of Checkerboard
o Free of artificial numerical dissipation — Only dissipation from the LES model
e Unconditionally stable

Daniel Santos 3/17



G

Figure 1: Collocated arrangement

@ LES modelling — Framework to do DNS/LES modelling on complex
geometries:

Free of Checkerboard

Free of artificial numerical dissipation — Only dissipation from the LES model

Unconditionally stable

Easily portable (to other codes, platforms...)
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1. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an

arbitrary collocated mesh

du,

th

+ C(us)uc = —Du. — QG.p,, (1)
Mug = 0. (2)

o p.=(p1,.y p,,)T € R" s the cell-centered pressure.

o uc. = (ug,up,u3)” € R¥ | where u; = ((uj)1, .., (u;)n) T are the vectors
containing the velocity components corresponding to the x;—spatial direction.

o us = ((us)1, .-, (us)m)™ € R™ is the staggered velocity.

@ The velocities are related via the interpolator from cells to faces
rc—>s S RmXSn — us = rc—>suc~
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Definition of basic collocated operators

The (3D) interpolator from cells to faces can be constructed as follows:
Mes = NI, 3)

where
o N = (NsNs,Ns,) e R™3™  where Ns x, Nsy, N5, € R™™ are diagonal
matrices containing the x; spatial component of the face normal vectors.

0 MN=k@M._s e R3m*3n
@ MM._s € R™*" is the scalar cell-to-face interpolator.
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Definition of basic collocated operators

o is a diagonal matrix with the cell-centered volumes
— =hL®Q..

o| C.(us) € R™" is the cell-centered convective operator for a discrete scalar

ield = u;) = 5 ® C(us).
o is the cell-centered diffusive operator for a discrete scalar field
— D=hk®D..
Finally,

o G. € R3™" represents the discrete collocated gradient.

o M e R™™ s the face-to-cell discrete divergence operator.
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Definition of basic collocated operators

o Q. € R™" s a diagonal matrix with the cell-centered volumes
— Q=5hLK®Q..
o C.(us) € R™" s the cell-centered convective operator for a discrete scalar
field = C(us) = K ® Cc(us).
o D. € R™" s the cell-centered diffusive operator for a discrete scalar field
— D=5kK®D..
Finally,

° represents the discrete collocated gradient.

° is the face-to-cell discrete divergence operator.

Daniel Santos



Other useful operators

G=-Q;'MT,

L=MG=—-MQMT,

Le=M.G.= Ml Q7 'rl , .M",
Mone =Q7'TLQ. (4)

where G is the center-to-face staggered gradient, L is the Laplacian operator, L. is
the collocated-Laplacian operator and [;_,. is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246-267, 2014.
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2. Conservation of global kinetic energy

Global kinetic energy equation

d||'~'6||2__ T T T T
0 = u_ (C(us) + C" (us))uc —u. (D+ D" )u,

—u/QG.p,. —p!/ G QT u.. (5)

In the absence of diffusion, that is, D = 0, the global kinetic energy is conserved if:

e C(us) = —CT(uy), i.e, the convective operator should be skew-symmetric.
o (—QG.)T = Ml._,, because Mug = 0..
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective

operator

dlfucl? _

o —u/(D+D"u, —ulQGp, —pl G QTu,.

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:

o (—QG.)" = MI'._,, because Mug = 0. (But this relation is exact ONLY in
staggered configurations!).

In collocated framework, we either solve:

Mus =0 — Lp. = MT._,su? — Kinetic Energy Error (6)
Mcue =0 — L.pe = MI ., su? — Checkerboard @)
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective

operator

dlfucl?

dt —u/(D+D")uc —ulQ6ep, —p! G/ Q" u.

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:

o (-QG.)" = Ml because Mug = 0. (But this relation is exact ONLY in
staggered configurations!).

In collocated framework and explicit time integration, the (artificial) kinetic energy
added is given by:
—p/ G QTuc =pl (L - Lc)p At (8)
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A

stable pressure gradient interpolation

@ The volume-weighted interpolator can be constructed as:

MNess = A;1A57;7 (9)
where A; € R™*™ s a diagonal matrix containing the projected distances
between two adjacent control volumes, and A, € R™*" contains the
projected distances between an adjacent cell node and its corresponding face.

Vi r Var
Vi i+ Vo r Pe1 + Vi i+ Vo r Pe2.

Volume-weighted interpolation: ¢r =

Vsl Vs2

Figure 2: Volume-weighted volumes
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Conservation of global kinetic energy

Stable solutions — Eigenvalues of L — L. negative.

Assumptions:
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@ The method preserves the symmetries of the differential operators.
Then, pl (L — L )pl <0 —

@ The volume-weighted cell-to-face interpolator is used for the pressure
gradient interpolator.

(2]
Vi= Y Vien?e, Yhe{l,..,n}, i€{xy,z} (10)
fEF(k)
Z Vk,fni,fnj,f < 07 Vk € {L"'an}a lvf € {X,y,Z}, l#l7 (11)

feF(k)

v
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Conservation of global kinetic energy

What is the theorem saying:
@ Under these assumptions, the method is always unconditionally stable.
@ The volume-weighted interpolator is strictly needed for the result.
@ The theorem holds for both explicit and implicit time integration.
What is the theorem not saying:

@ These are the unique assumptions in order to have stable simulations.
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@ Under these assumptions, the method is always unconditionally stable.
@ The volume-weighted interpolator is strictly needed for the result.
@ The theorem holds for both explicit and implicit time integration.
What is the theorem not saying:

@ These are the unique assumptions in order to have stable simulations.

Cartesian hexahedral meshes always give stable results when using the
volume-weighted interpolator.

Triangular meshes give stable results when using the volume-weighted interpolator
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3. Summary and conclusions
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o (Almost)Free of artificial numerical dissipation — Avrtificial dissipation
controlled and small p/ (L — Lc)p!
e Unconditionally stable

o Easily portable (to other codes, platforms...) — Only five operators are
needed Q., Qs, N, M5, M

@ The volume-weighted interpolator was shown to be unconditionally stable even
for high-distorted meshes when the geometrical conditions are satisfied.

@ Triangular meshes need to place the node at the circumcenter.
Ongoing work

@ Find the conditions for tetrahedral meshes in order to satisfy the geometrical
conditions of the theorem.
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