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Figure 1: Collocated arrangement

LES modelling → Framework to do DNS/LES modelling on complex
geometries:

Free of Checkerboard
Free of artificial numerical dissipation → Only dissipation from the LES model
Unconditionally stable
Easily portable (to other codes, platforms...)
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1. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an
arbitrary collocated mesh

Ωduc
dt + C(us)uc = −Duc − ΩGcpc , (1)

Mus = 0c . (2)

pc = (p1, ..., pn)T ∈ Rn is the cell-centered pressure.
uc = (u1, u2, u3)T ∈ R3n , where ui = ((ui)1, ..., (ui)n)T are the vectors
containing the velocity components corresponding to the xi−spatial direction.
us = ((us)1, ..., (us)m)T ∈ Rm is the staggered velocity.
The velocities are related via the interpolator from cells to faces
Γc→s ∈ Rm×3n =⇒ us = Γc→suc .
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Definition of basic collocated operators

The (3D) interpolator from cells to faces can be constructed as follows:

Γc→s = NΠ, (3)

where
N = (Ns,x Ns,y Ns,z) ∈ Rm×3m where Ns,x , Ns,y , Ns,z ∈ Rm×m are diagonal
matrices containing the xi spatial component of the face normal vectors.
Π = I3 ⊗ Πc→s ∈ R3m×3n .
Πc→s ∈ Rm×n is the scalar cell-to-face interpolator.
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Definition of basic collocated operators

Ωc ∈ Rn×n is a diagonal matrix with the cell-centered volumes
=⇒ Ω = I3 ⊗ Ωc .
Cc(us) ∈ Rn×n is the cell-centered convective operator for a discrete scalar

field =⇒ C(us) = I3 ⊗ Cc(us).
Dc ∈ Rn×n is the cell-centered diffusive operator for a discrete scalar field

=⇒ D = I3 ⊗ Dc .
Finally,

Gc ∈ R3n×n represents the discrete collocated gradient.
M ∈ Rn×m is the face-to-cell discrete divergence operator.
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Other useful operators

G = −Ω−1
s MT ,

L = MG = −MΩ−1
s MT ,

Lc = McGc = −MΓc→sΩ−1ΓT
c→sMT ,

Γs→c = Ω−1ΓT
c→sΩs . (4)

where G is the center-to-face staggered gradient, L is the Laplacian operator, Lc is
the collocated-Laplacian operator and Γs→c is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246–267, 2014.
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2. Conservation of global kinetic energy

Global kinetic energy equation

d ||uc ||2

dt = −uT
c (C(us) + CT (us))uc − uT

c (D + DT )uc

−uT
c ΩGcpc − pT

c GT
c ΩT uc . (5)

In the absence of diffusion, that is, D = 0, the global kinetic energy is conserved if:

C(us) = −CT (us), i.e, the convective operator should be skew-symmetric.
(−ΩGc)T = MΓc→s , because Mus = 0c .
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Mimicking continuous properties
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective
operator

d ||uc ||2

dt = −uT
c (D + DT )uc − uT

c ΩGcpc − pT
c GT

c ΩT uc .

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
(−ΩGc)T = MΓc→s , because Mus = 0c (But this relation is exact ONLY in
staggered configurations!).

In collocated framework, we either solve:

Mus = 0 → Lpc = MΓc→sup
c → Kinetic Energy Error (6)

Mcuc = 0 → Lcpc = MΓc→sup
c → Checkerboard (7)
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Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective
operator

d ||uc ||2

dt = −uT
c (D + DT )uc − uT

c ΩGcpc − pT
c GT

c ΩT uc .

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
(−ΩGc)T = MΓc→s , because Mus = 0c (But this relation is exact ONLY in
staggered configurations!).

In collocated framework and explicit time integration, the (artificial) kinetic energy
added is given by:

−pT
c GT

c ΩT uc = pT
c (L − Lc)pc∆t (8)
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A stable pressure gradient interpolation
The volume-weighted interpolator can be constructed as:

Πc→s = ∆−1
s ∆T

sc , (9)
where ∆s ∈ Rm×m is a diagonal matrix containing the projected distances
between two adjacent control volumes, and ∆sc ∈ Rm×n contains the
projected distances between an adjacent cell node and its corresponding face.

Volume-weighted interpolation: ϕf = Ṽ1,f
Ṽ1,f +Ṽ2,f

ϕc1 + Ṽ2,f
Ṽ1,f +Ṽ2,f

ϕc2.

Figure 2: Volume-weighted volumes
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Conservation of global kinetic energy

Stable solutions → Eigenvalues of L − Lc negative.

Theorem
Assumptions:

Our projection method adds a kinetic energy error of the form pT
c (L − Lc)pT

c
(such as the FSM or PISO).
The method preserves the symmetries of the differential operators.

Then, pT
c (L − Lc)pT

c ≤ 0 ⇐⇒
1 The volume-weighted cell-to-face interpolator is used for the pressure

gradient interpolator.
2

Vk =
∑

f ∈F (k)

Ṽk,f n2
i,f , ∀k ∈ {1, ..., n}, i ∈ {x , y , z} (10)

∑
f ∈F (k)

Ṽk,f ni,f nj,f ≤ 0, ∀k ∈ {1, ..., n}, i , j ∈ {x , y , z}, i ̸= j , (11)
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Conservation of global kinetic energy

What is the theorem saying:
Under these assumptions, the method is always unconditionally stable.
The volume-weighted interpolator is strictly needed for the result.
The theorem holds for both explicit and implicit time integration.

What is the theorem not saying:
These are the unique assumptions in order to have stable simulations.

Corollary 1
Cartesian hexahedral meshes always give stable results when using the
volume-weighted interpolator.

Corollary 2
Triangular meshes give stable results when using the volume-weighted interpolator
if the node is placed at the circumcenter.
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Numerical robustness

Figure 3: Highly distorted mesh used to test the method’s robustness in a Reτ = 395
channel flow. Maximum aspect ratio is 250.
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Numerical robustness

Figure 4: Test of the method’s robustness in a Ra = 106 differentially heated cavity.
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3. Summary and conclusions

General conclusions
An energy-preserving unconditionally stable (PISO or FSM) on collocated grids
has been presented:

Free of Checkerboard
(Almost)Free of artificial numerical dissipation → Artificial dissipation
controlled and small pT

c (L − Lc)pT
c

Unconditionally stable
Easily portable (to other codes, platforms...) → Only five operators are
needed Ωc , Ωs , N, Πc→s , M

The volume-weighted interpolator was shown to be unconditionally stable even
for high-distorted meshes when the geometrical conditions are satisfied.
Triangular meshes need to place the node at the circumcenter.

Ongoing work
Find the conditions for tetrahedral meshes in order to satisfy the geometrical
conditions of the theorem.
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