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INTRODUCTION

In the numerical integration of an ordinary differential

equation (ODE), the general concerns are performance, stabil-

ity, and accuracy. All three are characterized by the method’s

coefficients as well as the step size. The former is usually not

in the hands of the user once a scheme has been established,

as coefficients are generally constant, while reducing the step

size, which at the same time reduces the performance of the

code; it will take longer to cover the desired domain. These

generates a trade-off in which the user has to be aware of the

pros and cons of using a larger or smaller step size given the

requirements of the integration.

One of the different possibilities when integrating ODEs

is the Runge-Kutta (RK) method, in which the value of the

function that is being integrated, at the next step φn+1, is

computed only considering the current step φn and interme-

diate approximate values, φi in the s stages of the scheme, so

that

φi = φn + h
s∑
j=1

aijf(φj), (1a)

φn+1 = φn + h

s∑
i=1

bif(φi), (1b)

where h is the step size and aij , bi are the RK coefficients

arranged in the so-called Butcher’s tableau.

When the Navier-Stokes equations are semi-discretized,

Mu = 0, (2a)

Ω
du

dt
+ C(u)u = Du− ΩGp, (2b)

a differential algebraic equation (DAE) of order 2 is ob-

tained. The solution of these equations using RK is developed

by Sanderse and Koren [1] by means of a projection method.

Originally, the timestep ∆t had been selected with the clas-

sical CFL condition, which estimates the eigenvalues of the

method, and then the expected stable timestep is reduced with

the so-called Courant number (or CFL number) to ensure the

integration is stable. Later on, Trias and Lehmkuhl [2] used

Gershgorin theorem to compute the eigenbounds of the pre-

dictor step in the projection method to use the largest possible

timestep allowed by the stability region. This same technique

can be applied to RK as the stability region is defined by the

polynomial

R(z) = 1 +
s∑

k=1

1

k!
zk, (3)

for s ≥ p, being p the order of accuracy of the method.

Hence, by the linear stability theory, in a general ODE,

φn+1 = R(hλ)φn, (4)

where λ ∈ C is the eigenbound of the system. Hence, stability

will be obtained if |R(hλ)| ≤ 1 holds.

Nonetheless, when this method was applied to a simulation

with a timestep of 95% of the maximum stable value, some

spurious modes appeared in the solution which were evident

in the instantaneous fields, as seen in Fig. 1, and generated an

overprediction of urms in the core of the channel. When 85%

of the maximum stable timestep was used, then this instabil-

ity was not present, and instead, the obtained fields were as

expected. Trying to understand what generated these insta-

bilities was the main motivation for the development of this

work.

Figure 1: Spurious modes observed in the cross-stream plane

at 95% of the maximum stable timestep for a coarse (643)

Reτ = 180 channel flow simulation for velocity (left) and pres-

sure (right).

POSITIVITY-PRESERVING SOLUTIONS

Let us consider the following ODE,

dφ

dt
= λφ, λ ∈ C, (5)

with φ(0) = 1. Since it leads to φ(t) = eλt as an analytical

solution, a monotonic solution is expected. In this first case,

consider λ = −1, hence the stability polynomial R(z) becomes



R(h) = 1 +
s∑

k=1

(−1)k

k!
hk, (6)

where, if R(h) < 0, φn+1 will change sign and thus the ob-

tained solution will not be monotonic. For instance, by using

a third-order scheme, such as the strong-stability preserving

third-order Runge-Kutta (SSPRK3) from Shu and Osher [3],

R(h) = 1−h+ 1
2
h2− 1

6
h3, the solution will not be monotonic

for h > 1.6, as shown in Fig. 2 (left), even though it will be

stable for step size values smaller than 2.5.

Nonetheless, in the case of having a complex eigenvalue,

using this approach is not so straightforward. Hence, let λ =

−||λ||e−iφ. Introducing it in the stability polynomial,

R(hλ) = 1 +
s∑

k=1

(−1)k

k!
(h||λ||)k cos(kφ)

+i
s∑

k=1

(−1)k+1

k!
(h||λ||)k sin(kφ),

(7)

the polynomial can be split into a real and imaginary part,

R = Rr + iRi. By introducing it into the linear stability

analysis equation, φn should be treated as complex so that

φn = φnr + iφni . Expressed as a matrix equation,(
φn+1
r

φn+1
i

)
=

(
Rr −Ri
Ri Rr

)
︸ ︷︷ ︸

A

(
φnr
φni

)
, (8)

in which the oscillations will appear if and only if the matrix

A fulfills xTAx > 0, ∀x ∈ R2. This will only hold if Rr > 0,

being the same condition as for a purely diffusive case.
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Figure 2: Numerical solutions for different h values for dtφ =

(− cos(α)+ i sin(α))φ with a SSPRK3 scheme, for α = 0 (left)

and α = 60o (right)

PHASE-PRESERVING SOLUTIONS

In the previous section, the conditions for badly suited real

contributions in the stability polynomial are presented. How-

ever, what happens when the imaginary contribution becomes

negative? A sudden change of sign for the imaginary term will

imply that the phase of this stability coefficient varies in π,

which at the same time will transport the solution for half a

period. Hence, having a negative imaginary contribution from

the stability polynomial should also be avoided.

As shown in Fig. 2 (right), for h > 2.5, the phase of the

solution has changed. In addition, an increase in magnitude

can be observed as the solution is closer to the stability limit,

which is surpassed for h = 2.75.

LIMITING THE STABILITY REGION FOR RUNGE-KUTTA

SCHEMES

The observation of these phenomena generates the need to

consider adding these conditions when setting the timestep

of the numerical simulation. Hence, the ”go-to” zone will be

determined as follows,
|R(hλ)| ≤ 1,

Rr(hλ) > 0,

Ri(hλ) > 0,

(9)

so that both the sign and the phase of the solution are

preserved, considering a stable integration in the first place.

This will thus define two additional regions on top of the

classical stability region: first of all, the positivity-preserving

region will consist of all those combinations of hλ such that

Rr > 0 and thus, no synthetic change in the monotonicity

of the solution should be observed. On the other hand, the

phase-preserving region will be determined by the combina-

tions of hλ such that Ri > 0, and thus the phase is preserved

throughout the integration.

By applying these conditions to the stability polynomial

to limit the stability region of the scheme, the results from

Fig. 3 are obtained for a third-order RK scheme. It can be

observed that in integrations with eigenvalues with angles of

approximately between 30 and 50 degrees, for a third-order

scheme, the whole stability region can be exploited, as both

the sign and as the phase will be preserved as long as the

integration is stable. The applicability of these results to CFD

in deeper detail is expected to be presented in the workshop.
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Figure 3: Stability region of a third-order Runge-Kutta

scheme (black), with the positivity region (red) as well as the

phase region (blue).
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