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Introduction

Runge-Kutta integration in Navier-Stokes

Performed according to Sanderse and Koren 1:

u∗
i = un + ∆t

i−1∑
j=1

aijFj

LΨi =
1

∆t
Du∗

i

ui = u∗
i −∆tGΨi

with self-adaptive timestep, adapted from Trias
and Lehmkuhl2 to Runge-Kutta integration.

With Heun’s RK3, at 90% of maximum
stable timestep...

1Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible
Navier-Stokes equations, J. Comp. Phys. 231 (8), 3041-3063 (2012)

2Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations,
Numer. Heat Transfer B 60 (2), 116-134 (2011)
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Positivity preservation
Real eigenvalue

Consider the following ODE,

dφ

dt
= λφ,

which solution is known as φ(t) = φ0e
λt ,

where φ0 = φ(0).

If λ = −1...

R(h) = 1 +
s∑

k=1

(−1)k

k!
hk ,

so that φn+1 ≈ R(h)φn. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Positivity preservation
Complex eigenvalue

Let λ = −||λ||e−iϕ...

The stability polynomial can be rewritten as,

R(hλ) = 1 +
s∑

k=1

(−1)k

k!
(h||λ||)k cos(kϕ) + i

s∑
k=1

(−1)k+1

k!
(h||λ||)k sin(kϕ) = Rr + iRi

Considering φn = φnr + iφni ... (
φn+1
r

φn+1
i

)
=

(
Rr −Ri

Ri Rr

)
︸ ︷︷ ︸

A

(
φnr
φni

)

It will preserve positivity if xTAx > 0, for an arbitrary x ∈ R2, which is achieved if Rr > 0.
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Positivity preservation
Complex eigenvalue
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Positivity preservation

Some stable oscillations might appear for a big enough step size h.

Depends on Runge-Kutta scheme used (stability polynomial).
Depends on the eigenvalues of the ODE.

Positivity-preserving solutions are obtained when...

Rr > 0
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Phase preservation

So... what if Ri < 0? For ϕ = 60o ...
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Phase preservation

The phase of the solution changes for a big enough step size h.

As for the positivity preservation, depends on RK scheme as well as the ODE eigenvalues.

Phase-preserving solutions are obtained when...

Ri > 0
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Revisiting the stability region
Original standpoint

Linear stability analysis

φn+1 ≈ R(λh)φn

For explicit Runge-Kutta schemes such
that s = p:

R(λh) = 1 +

p∑
k=1

(λh)k

k!

Stability for |R(hλ)| ≤ 1
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Revisiting the stability region
Additional conditions

Application of the previous results...

Numerical stability

Required conditions:

|R(hλ)| ≤ 1
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Revisiting the stability region
Additional conditions

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
Re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Im

Stability region

Positivity region

Phase region

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
Re

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Im

Stability region

Positivity region

Phase region

11 / 13



Introduction Positivity preservation Phase preservation Runge-Kutta stability region revisited Conclusion

Revisiting the stability region
Go-to zone
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Concluding remarks

Non-physical oscillations were observed in a turbulent channel flow simulation

Effect of a large stable h in the numerical solution of the ODE

Can generate those non-physical oscillations
Can generate changes on the phase of the solution → sort of dispersion error?

Found to be due to the sign of the stability polynomial

Representation of the positivity region and phase region

Determination of the go-to zone
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