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Introduction
o

Introduction

Runge-Kutta integration in Navier-Stokes

Performed according to Sanderse and Koren 1:
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with self-adaptive timestep, adapted from Trias
and Lehmkuhl? to Runge-Kutta integration.

v

1Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible
Navier-Stokes equations, J. Comp. Phys. 231 (8), 3041-3063 (2012)
2Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations,
Numer. Heat Transfer B 60 (2), 116-134 (2011)
2/13



Introduction
o

Introduction

Runge-Kutta integration in Navier-Stokes e With Heun’s RK3, at 90% of maximum

. stable timestep...
Performed according to Sanderse and Koren 1: P
-—.—--'—-"—':—T—-w-

i—1
ur =u,+ AtZa,-ij
j=1

1
LW; = - Du;
u; = U;-k — AtGV; R a — i ..
ux_N
with self-adaptive timestep, adapted from Trias I 3.0e-01 10 20 2.9e+01
and Lehmkuhl? to Runge-Kutta integration. L -

v

1Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible
Navier-Stokes equations, J. Comp. Phys. 231 (8), 3041-3063 (2012)
2Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations,
Numer. Heat Transfer B 60 (2), 116-134 (2011)
2/13



Introduction
o

Introduction

o With Heun's RK3, at 90% of maximum

Runge-Kutta integration in Navier-Stokes stable timestep...

. 3 T T T T T T T T
Performed according to Sanderse and Koren 1: iross ©
. i
25 T
i—1 ‘
* _ . . N +:X
u; =u, + At E ajiF; N ]
Jj=1 "l
LV, = = Du Nt ’
i = —Du-: v Xy
1 + x
At T Ely
Lf ¥y 1
U;:U:-katG\U,' TF ey

with self-adaptive timestep, adapted from Trias
and Lehmkuhl? to Runge-Kutta integration. o

y 0 20 40 60 80 100 120 140 160 180

1Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible
Navier-Stokes equations, J. Comp. Phys. 231 (8), 3041-3063 (2012)

2Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations,
Numer. Heat Transfer B 60 (2), 116-134 (2011) 2/13



Positivity preservation
o

Positivity preservation

Real eigenvalue

@ Consider the following ODE,

o
e

which solution is known as ¢(t) = ¢oe’t,
where ¢o = ¢(0).
o If A=—-1...

so that ¢"™1 =~ R(h)¢".
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Positivity preservation

Complex eigenvalue

The stability polynomial can be rewritten as,

S 1\k S [ 1\k+1
R(hA):1+Z( k1|) (h||)\||)kcos(kcp)+iz( 1k)' . (h|A]))*sin(kg) = R, + iR;
k=1 ’ k=1 ’

o Considering ¢" = ¢7 + ig?...

¢7+1 _ Rr _Ri ¢’r7
o) “\R R ) \g
A

o It will preserve positivity if x” Ax > 0, for an arbitrary x € R?, which is achieved if R, > 0.

4/13



Positivity preservation
oe

Positivity preservation

Complex eigenvalue

R(h)

R(h)
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@ Some stable oscillations might appear for a big enough step size h.
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Positivity preservation

@ Some stable oscillations might appear for a big enough step size h.

e Depends on Runge-Kutta scheme used (stability polynomial).
o Depends on the eigenvalues of the ODE.

Positivity-preserving solutions are obtained when...

R, >0
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Phase preservation

@ So... what if R; < 0?7 For ¢ =60°...
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preservation
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Phase preservation

@ The phase of the solution changes for a big enough step size h.

o As for the positivity preservation, depends on RK scheme as well as the ODE eigenvalues.

Phase-preserving solutions are obtained when...

R >0
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Runge-Kutta stability region revisited
L]

Revisiting the stability region

Original standpoint

Linear stability analysis

¢"*1 ~ R(A)¢"

@ For explicit Runge-Kutta schemes such
that s = p:

R(AR) =1+ ij (Akh!)k

@ Stability for |R(hA)| <1
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Revisiting the stability region

Original standpoint
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Additional conditions

@ Required conditions:

Application of the previous results... IR(hA)] < 1

@ Numerical stability
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Revisiting the stability region

Additional conditions
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Revisiting the stability region

Go-to zone

Runge-Kutta stability region revisited
L]
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Conclusion
o

Concluding remarks

Non-physical oscillations were observed in a turbulent channel flow simulation

Effect of a large stable h in the numerical solution of the ODE

o Can generate those non-physical oscillations
o Can generate changes on the phase of the solution — sort of dispersion error?

Found to be due to the sign of the stability polynomial

(]

Representation of the positivity region and phase region

Determination of the go-to zone
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