Beyond classical stability analysis on Runge-Kutta schemes: positivity and phase preservation

J. Plana-Riu, F.X. Trias, A. Oliva

Heat and Mass Transfer Technological Centre Technical University of Catalonia

14th Workshop on Direct and Large Eddy Simulation (DLES)

April 10th 2024 Erlangen, Germany

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Introduction	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
•	0000	00	0000	
Introduction				

Runge-Kutta integration in Navier-Stokes

Performed according to Sanderse and Koren ¹:

$$u_i^* = u_n + \Delta t \sum_{j=1}^{i-1} a_{ij} F_j$$
$$L\Psi_i = \frac{1}{\Delta t} D u_i^*$$
$$u_i = u_i^* - \Delta t G \Psi_i$$

with self-adaptive timestep, adapted from Trias and Lehmkuhl 2 to Runge-Kutta integration.

¹Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations, *J. Comp. Phys.* **231** (8), 3041-3063 (2012)

²Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations, Numer. Heat Transfer B 60 (2), 116-134 (2011)

Introduction	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
•	0000	00	0000	
Introduction				

Runge-Kutta integration in Navier-Stokes

Performed according to Sanderse and Koren ¹:

$$\mathbf{u}_i^* = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \mathsf{F}_j$$

 $\mathcal{L} \Psi_i = \frac{1}{\Delta t} D \mathbf{u}_i^*$
 $\mathbf{u}_i = \mathbf{u}_i^* - \Delta t G \Psi_i$

with self-adaptive timestep, adapted from Trias and Lehmkuhl² to Runge-Kutta integration.

• With Heun's RK3, at 90% of maximum stable timestep...

¹Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations, *J. Comp. Phys.* **231** (8), 3041-3063 (2012)

²Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations, Numer. Heat Transfer B 60 (2), 116-134 (2011)

Introduction	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
•	0000	00	0000	
Introduction				

Runge-Kutta integration in Navier-Stokes

Performed according to Sanderse and Koren ¹:

$$\mathbf{u}_i^* = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \mathbf{F}_j$$
 $\mathcal{L} \Psi_i = \frac{1}{\Delta t} D \mathbf{u}_i^*$
 $\mathbf{u}_i = \mathbf{u}_i^* - \Delta t G \Psi_i$

with self-adaptive timestep, adapted from Trias and Lehmkuhl 2 to Runge-Kutta integration.

• With Heun's RK3, at 90% of maximum stable timestep...

¹Sanderse, B., Koren, B. : Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations, *J. Comp. Phys.* **231** (8), 3041-3063 (2012)

²Trias, F.X., Lehmkuhl, O. : A self-adaptive strategy for the time integration of Navier-Stokes equations, *Numer. Heat Transfer* B **60** (2), 116-134 (2011)

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pre Real eigenvalue	servation			

$$rac{d\phi}{dt} = \lambda \phi,$$

which solution is known as $\phi(t) = \phi_0 e^{\lambda t}$, where $\phi_0 = \phi(0)$.

• If $\lambda = -1...$

$$R(h) = 1 + \sum_{k=1}^{s} \frac{(-1)^{k}}{k!} h^{k},$$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000	00	0000	
Positivity pre Real eigenvalue	servation			

$$\frac{d\phi}{dt} = \lambda\phi,$$

which solution is known as $\phi(t) = \phi_0 e^{\lambda t}$, where $\phi_0 = \phi(0)$.

• If $\lambda = -1...$

$$R(h) = 1 + \sum_{k=1}^{s} \frac{(-1)^{k}}{k!} h^{k},$$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pre Real eigenvalue	servation			

$$rac{d\phi}{dt} = \lambda \phi,$$

which solution is known as $\phi(t) = \phi_0 e^{\lambda t}$, where $\phi_0 = \phi(0)$.

• If $\lambda = -1...$

$$R(h) = 1 + \sum_{k=1}^{s} \frac{(-1)^{k}}{k!} h^{k},$$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pre Real eigenvalue	servation			

$$\frac{d\phi}{dt} = \lambda\phi,$$

which solution is known as $\phi(t) = \phi_0 e^{\lambda t}$, where $\phi_0 = \phi(0)$.

• If $\lambda = -1...$

$$R(h) = 1 + \sum_{k=1}^{s} \frac{(-1)^{k}}{k!} h^{k},$$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pre Complex eigenvalue	servation			

Let $\lambda = -||\lambda||e^{-i\varphi}...$

The stability polynomial can be rewritten as,

$$R(h\lambda) = 1 + \sum_{k=1}^{s} \frac{(-1)^{k}}{k!} (h||\lambda||)^{k} \cos(k\varphi) + i \sum_{k=1}^{s} \frac{(-1)^{k+1}}{k!} (h||\lambda||)^{k} \sin(k\varphi) = R_{r} + iR_{i}$$

• Considering $\phi^n = \phi^n_r + i \phi^n_i \dots$

$$\begin{pmatrix} \phi_r^{n+1} \\ \phi_i^{n+1} \end{pmatrix} = \underbrace{\begin{pmatrix} R_r & -R_i \\ R_i & R_r \end{pmatrix}}_{A} \begin{pmatrix} \phi_r^n \\ \phi_i^n \end{pmatrix}$$

• It will preserve positivity if $x^T A x > 0$, for an arbitrary $x \in \mathbb{R}^2$, which is achieved if $R_r > 0$.

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000	00	0000	
Positivity pre Complex eigenvalue	servation			

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pr	eservation			

• Some *stable* oscillations might appear for a big enough step size *h*.

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pre	servation			

- Some *stable* oscillations might appear for a big enough step size *h*.
 - Depends on Runge-Kutta scheme used (stability polynomial).

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity pro	eservation			

- Some *stable* oscillations might appear for a big enough step size *h*.
 - Depends on Runge-Kutta scheme used (stability polynomial).
 - Depends on the eigenvalues of the ODE.

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000			
Positivity	preservation			

- Some *stable* oscillations might appear for a big enough step size *h*.
 - Depends on Runge-Kutta scheme used (stability polynomial).
 - Depends on the eigenvalues of the ODE.

Positivity-preserving solutions are obtained when...

 $R_r > 0$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
		• •		
Phase preserv	vation			

• So... what if
$$R_i < 0$$
? For $\varphi = 60^{\circ}$...

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
		•0		
Phase pre	eservation			

• So... what if
$$R_i < 0$$
? For $arphi = 60^o...$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000	•0	0000	
Phase pre	eservation			

• So... what if
$$R_i < 0?$$
 For $arphi = 60^o...$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
		00		
Phase pre	eservation			

- The phase of the solution changes for a big enough step size *h*.
 - As for the positivity preservation, depends on RK scheme as well as the ODE eigenvalues.

Phase-preserving solutions are obtained when...

 $R_i > 0$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
			0000	
Revisiting the	e stability region			

Linear stability analysis

 $\phi^{n+1} \approx R(\lambda h)\phi^n$

• For explicit Runge-Kutta schemes such that *s* = *p*:

$$R(\lambda h) = 1 + \sum_{k=1}^{p} \frac{(\lambda h)^k}{k!}$$

• Stability for $|R(h\lambda)| \leq 1$

	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000	00	0000	
Revisiting the Original standpoint	e stability region			

Linear stability analysis

 $\phi^{n+1} \approx R(\lambda h) \phi^n$

• For explicit Runge-Kutta schemes such that *s* = *p*:

$$R(\lambda h) = 1 + \sum_{k=1}^{p} \frac{(\lambda h)^k}{k!}$$

• Stability for $|R(h\lambda)| \leq 1$

Application of the previous results...

• Numerical stability

- Required conditions:
 - $|R(h\lambda)| \leq 1$

Runge-Kutta stability region revisited 0000

Revisiting the stability region Additional conditions

Application of the previous results...

- Numerical stability
- Positivity-preservation
 - Non-physical oscillations disappear

• Required conditions:

 $|R(h\lambda)| \leq 1$ $R_r > 0$ Introduction Positivity preservation Phase preservation Runge-Kutta stability region revisited Conclusion o 0 000 00 00 000 0 Revisiting the stability region

Revisiting the stability region

Application of the previous results...

- Numerical stability
- Positivity-preservation
 - Non-physical oscillations disappear
- Phase-preservation

• Required conditions:

 $egin{aligned} |R(h\lambda)| &\leq 1 \ R_r > 0 \ R_i > 0 \end{aligned}$

Revisiting the stability region

Application of the previous results...

- $\bullet~$ Numerical stability $~\rightarrow~$ Stability region
- Positivity-preservation
 - Non-physical oscillations disappear
- Phase-preservation

• Required conditions:

 $egin{aligned} |R(h\lambda)| &\leq 1 \ R_r > 0 \ R_i &> 0 \end{aligned}$

 Introduction
 Positivity preservation
 Phase preservation
 Runge-Kutta stability region revisited
 Conclusion

 0
 000
 00
 000
 0

Revisiting the stability region

Application of the previous results...

- Numerical stability \rightarrow **Stability region**
- Positivity-preservation \rightarrow **Positivity** region
 - Non-physical oscillations disappear
- Phase-preservation

• Required conditions:

 $egin{aligned} |R(h\lambda)| &\leq 1 \ R_r > 0 \ R_i > 0 \end{aligned}$

Revisiting the stability region

Application of the previous results...

- Numerical stability \rightarrow **Stability region**
- Positivity-preservation \rightarrow **Positivity** region
 - Non-physical oscillations disappear
- Phase-preservation \rightarrow Phase region

• Required conditions:

 $egin{aligned} |R(h\lambda)| &\leq 1 \ R_r > 0 \ R_i &> 0 \end{aligned}$

Introduction	Positivity preservation	Phase preservation	Runge-Kutta stability region revisited	Conclusion
	0000	00	0000	•
Concluding	remarks			

- Non-physical oscillations were observed in a turbulent channel flow simulation
- Effect of a large stable h in the numerical solution of the ODE
 - Can generate those non-physical oscillations
 - $\bullet\,$ Can generate changes on the phase of the solution $\rightarrow\,$ sort of dispersion error?
- Found to be due to the sign of the stability polynomial
- Representation of the positivity region and phase region
- Determination of the go-to zone