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INTRODUCTION

In the last decades, many engineering/scientific applica-

tions have benefited from the advances in the field of Com-

putational Fluid Dynamics (CFD). Unfortunately, most of

practical turbulent flows cannot be directly computed from

the Navier–Stokes equations because not enough resolution is

available to resolve all the relevant scales of motion. Therefore,

practical numerical simulations have to resort to turbulence

modeling. We may therefore turn to large-eddy simulation

(LES) to predict the large-scale behavior of turbulent flows.

In LES, the large scales of motions are explicitly computed,

whereas effects of small scale motions are modeled. Since

the advent of CFD many subgrid-scale models have been

proposed and successfully applied to a wide range of flows.

Eddy-viscosity models for LES is probably the most popular

example thereof. Then, for problems with the presence of ac-

tive/passive scalars (e.g. heat transfer problems, transport of

species in combustion, dispersion of contaminants,...) the (lin-

ear) eddy-diffusivity assumption is usually chosen. However,

this type of approximation systematically fails to provide a

reasonable approximation of the actual SGS flux because they

are strongly misaligned [1, 2]. This was clearly shown in our

previous works [3, 4] where SGS features were studied a priori

for a RBC at Ra-number up to 1011 (see qeddy in Figure 1).

This leads to the conclusion that nonlinear (or tensorial) mod-

els are necessary to provide good approximations of the actual

SGS heat flux (see q in Figure 1). In this regard, the nonlinear

Leonard model [5] or gradient model, which is the leading term

of the Taylor series of the SGS flux, provides a very accurate a

priori approximation (see qnl in Figure 1). However, the local

dissipation introduced by the model can take negative values;

therefore, the Leonard model cannot be used as a standalone

SGS flux model, since it produces a finite-time blow-up. In

this context, we aim to shed light to the following research

question: can we a simple approach to reconcile accuracy and

stability for the gradient model?

DECONSTRUCTING THE GRADIENT MODEL

Let us firstly consider the following transport equation

∂tφ+ C(u, φ) = Dφ, (1)

where u denotes the advective velocity and φ represents a

generic (transported) scalar field. The non-linear convective

term is given by C(u, φ) ≡ (u · ∇)φ whereas the diffusive

terms reads Dφ ≡ Γ∇2φ. Shortly, LES equations arises from
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Figure 1: Left: alignment trends of the actual SGS heat flux. For

details the reader is referred to our work [3]. Right: DNS of the

air-filled RBC at Ra = 1010 studied in Refs. [3, 6].

applying a spatial commutative filter, (·), with filter length, δ,

∂tφ+ C(u, φ) = Dφ−∇ · τφ, (2)

where τφ ≡ uφ−uφ is the subgrid scalar flux. Then, the gra-

dient model follows from considering a Taylor-series expansion

of the filter

φ = φ+ φ′ = φ−
δ2

24
∇

2φ+O(δ4), (3)

where φ′ is the filter residual. Then, applying this to uφ and

uφ leads to

uφ ≈ uφ+
δ2

24
∇

2(uφ)

= uφ+
δ2

24
(∇2u)φ+

δ2

12
∇u∇φ+

δ2

24
u∇2φ, (4)

uφ ≈

(

u+
δ2

24
∇

2u

)(

φ+
δ2

24
∇

2φ

)

= uφ+
δ2

24
(∇2u)φ+

δ2

24
u∇2φ+

δ4

242
∇

2u∇2φ. (5)



Figure 2: Location of the eigenvalues for the matrix CF−FC (left)

and C
UP

F−FC
UP (right). Results correspond to a 4×3 Cartesian

with a random divergence-free velocity field.

Finally, plugging this into the definition of τφ and discarding

high-order terms leads to the standard form of the gradient

model

τφ ≈ τ
grad

φ
=

δ2

12
∇u∇φ. (6)

Alternatively, it can be expressed in terms of regularized

(smoother) forms of the convective operator as follows

∇ · τ
grad

φ
= C(u, φ) + C(u, φ)− C(u, φ) − C(u, φ), (7)

where

C(u, φ)− C(u, φ) =
δ2

24
∇

2
∇ · (uφ) =

δ2

24
∇ · (∇2(uφ)), (8)

C(u, φ)− C(u, φ) =
δ2

24
∇ · ((∇2u)φ), (9)

C(u, φ)− C(u, φ) =
δ2

24
∇ · (u∇2φ). (10)

The alternative form given in Eq.(7) is simply based on the

non-linear convective operator and the linear filter; therefore,

its implementation is straightforward. Moreover, it avoids the

interpolations required if the standard gradient model given

in Eq.(6) is directly implemented. Finally, it facilitates the

analysis of the gradient model, neatly identifying those terms

that may cause numerical instabilities. This is addressed in

the next section.

STABILIZING THE GRADIENT MODEL

Following the notation used in Ref. [7], the novel form of

the gradient model given in Eq.(7) would be discretized as

follows

Mτ
grad

φ,h
= C (us)φc + FC (us)φc − C (Fus)φc − C (us)Fφc,

(11)

where us and φc are respectively the discrete velocity field

defined at the faces and the cell-centered scalar field. More-

over, M, C (us) and F are matrices representing the discrete

divergence, convective and filter operators. For details, the

reader is referred to Ref. [7]. This discrete form of τgrad
φ

can

be expressed in matrix-vector form as follows

Mτ
grad

φ,h
=

(

I

F

)T (

C (us)− C (Fus) −C (us)

C (us) 0

)(

I

F

)

φc.

(12)

Recalling that the discrete convective and filter operator

should be respectively represented by a skew-symmetric ma-

trix, C = −CT , and a symmetric matrix, F=FT , the con-

tribution of the gradient model to the time-evolution of the

L2-norm of φc is given by

−φc ·Mτ
grad

φ,h
= φc · (CF− FC)φc. (13)

Hereafter, for simplicity, C = C (us). Therefore, stability of

the gradient model is determined by the sign of the Rayleigh

quotient of the matrix CF− FC. Therefore, if C = −CT , as it

should be from a physical point-of-view,

φc ·CFφc = φc · (CF)
Tφc = φc ·F

T
C
Tφc = −φc ·FCφc. (14)

In this case, there is no guarantee that the eigenvalues of the

matrix CF− FC will lie on stable half-side and, therefore, the

gradient model will be eventually unstable. This is clearly

shown in Figure 2 (left) where the locations of the eigenval-

ues is displayed for a 3 × 4 Cartesian mesh with a random

divergence-free velocity field.

Nevertheless, at this point, we have neatly identified the

discrete operators that lead to unstable modes. Hence, they

must be modified if we aim to solve the problem. A very simple

solution consists on using an upwind for the convective terms

in Eq.(13); namely, replacing C by CUP in the off-diagonal

terms in Eq.(12), leading to an overall contribution to the

time-evolution of the L2-norm of φc given by

−φc ·Mτ
grad

φ,h
= φc ·

(

C
UP

F − FC
UP

)

φc, (15)

where CUP corresponds to a first-order upwind discretization of

the convective term. In this way, all the eigenvalues lie on the

stable half-side (see Figure 2, right). A formal proof together

with both a priori and a posteriori tests will be presented.
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