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Introduction
Simulations of indoor environment. State of the art

• HVAC systems account for approximately 40% of the energy
consumption in buildings.

• The air distribution in buildings is usually evaluated either by
simplified reduced-order models or by CFD.

• Simplified models provide very rapid predictions but offer
limited information due to assumptions required.

• CFD simulations are computationally too expensive.
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Introduction
Requirements for indoor environmental simulations

Main challenges

• The indoor airflow is usually multi-scale and turbulent.

• Several long-lasting simulations are required for each project.

• Computational resources are very limited.

Computational requirements

• Be faster than real-time (R = tsim/tphy < 1).

• Provide sufficient accuracy (relative error - RE).

• Be computationally affordable (fit into an office computer).
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Introduction
Objectives of the study

1 Study the feasibility of affordable high-fidelity CFD for indoor
environmental applications.1

2 Estimate the computational cost of CFD on office computers
for these applications in the future.

3 Explore the cheaper alternatives to CFD for indoor
environmental applications.

1
N. Morozova, F. X. Trias, R. Capdevila, C. D. Pérez-Segarra and A. Oliva. On the feasibility of affordable

high-fidelity CFD simulations for indoor environment design and control. Building and Environment (2020)
184:107144.

5 / 32



Introduction High-fidelity CFD simulations Data-driven models Conclusions Future work

Governing equations

∇ · u = 0

∂u
∂t

+ (u · ∇)u = ν∇2u − 1

ρ
∇p + βg(T − T0)

∂T

∂t
+ (u · ∇)T = α∇2T ,

where u is the velocity vector, t the time, p the pressure, T the
temperature, T0 the reference temperature, ν the kinematic
viscosity, ρ the density, g the gravitational acceleration, β the
thermal expansion coefficient and α the thermal diffusivity.
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Physical problem
Three-dimensional mixed convection in a ventilated cavity2

AH = H/W = 1
AD = D/W = 0.3
Ain = hin/H = 0.017
Aout = hout/H = 0.023

Pr = 0.71
RaH = 2.4× 109

Frh = 5.24

tref = uref /H

uref = uin

Tref = ∆T = Th − Tc

2
D. Blay, S. Mergui, J.L. Tuhault and F.Penot. Experimental turbulent mixed convection created

by confined buoyant wall jets. First Eur Heat Transf Conf, UK, Sept 1992, 821-828.
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Numerical simulation details

Case Nx Noutlet + Nbulk + Ninlet = Ny Nz Ntotal

M0 (DNS) 512 57 + 398 + 57 = 512 128 3.36× 107

M1 10 2 + 10 + 3 = 15 4 6.00× 102

M2 15 2 + 20 + 3 = 25 4 1.50× 103

... ... ... ... ...
M11 120 20 + 120 + 20 = 160 30 5.76× 105

M12 160 20 + 140 + 20 = 180 40 1.15× 106

All simulations run for 500 and 10 non-dimensional time units,
respectively for steady and transient cases.
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Turbulence models and discretization approaches

Software Model Discretization

OpenFOAM
URANS k − ε collocated

URANS SST k − ω collocated

Termofluids
LES WALE collocated

no-model collocated

STG
LES S3PQ staggered

no-model staggered
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Results
Requirements for indoor environmental simulations

Computational requirements

1 Be faster than real-time:
• R 6 0.5 (twice faster than real-time) - for design;
• R . 0.15 (six times faster than real-time) - for control.

2 Provide sufficient accuracy:
• RE 6 5% - for detailed design;
• RE 6 15% - for conceptual design and control.

3 Be computationally affordable - fit into an office computer
(Intel Core i9-9900K processor with 41.6Gb/s memory
bandwidth).
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Results
Flow parameters analyzed

Nusselt number at the hot wall

Mean kinetic energy

Mean enstrophy

Mean temperature

Nu = − 1

A

∫
A

∂T

∂y
dA at y = 0

E =
1

V

∫
V

u2

2
dV

Ω =
1

V

∫
V
ω2dV

TV =
1

V

∫
V
TdV ,
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Results
Summary of the results

Case

Model

LES LES URANS URANS No-model No-model

WALE C S3PQ S k − ε C SST k − ω C C S

< 15% error
steady

(Conceptual
design)

< 5% error
steady

(Detailed
design)

< 15% error
transient
(control)

Notation

R 6 1 1 < R 6 10 10 < R 6 100 100 < R 6 1000 R > 1000 Low accuracy
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Discussion
Potential of accessing affordable high-fidelity CFD over the next years
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Discussion
Conclusions

• Fast high-fidelity CFD simulations on office computers are not
feasible neither for design nor for control of indoor
environments. Obtained run-times are too long to make CFD
a primary tool for HVAC applications.

• The growth of computational resources would not be enough
to make CFD available for routine use in building applications
in the near future.

• Cheaper alternatives to CFD are needed.
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Data-driven models
Introduction

• Data-driven models (DDM) are based on using data analysis
to find relations between system state variables (input,
internal and output) without explicit knowledge of the
physical behavior of the system.
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Data-driven models
Objectives of the study

1 Develop machine learning (ML) algorithms based on data
from CFD simulations, which predict airflow parameters.

2 Investigate the capabilities and limitations of these algorithms
as a cheaper alternative to CFD, taking into account specific
requirements for indoor environmental applications.

3 Study how the quality of input data affects the quality of
prediction.
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Test case description

• AH = H/W = {0.25, 0.5, 1, 2}
• RaH = 2.4× 109

• Frh = [1.38, 9.65] - total 20 points

• LES-S3PQ turbulence model

• Second-order symmetry-preserving
staggered discretization

• Mesh M11 with Ntot = 5.76× 105

• 500 time-units

• Total 80 CFD simulation

• 80% - train, 20% - test

• ≈ 215 CPU hours per
simulation

• ≈ 2€per simulation
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Data generation setup

Input parameters

1 Frh

2 AH

3 Ui ,Vi ,Ti

Output parameters

1 <Nu>

2 <TV >

3 <E>

4 <Ω>
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Numerical methods
Artificial neural network (ANN)

• Densely connected ANN with layer configuration of 29-16-4;

• Rectified linear activation function (ReLU);

• 10-fold cross validation.
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Numerical methods

Support vector regression (SVR)

• Regression is based on high dimensional hyper-plane;

• Radial basis function (RBF) kernel;

• Output parameters are trained in chain;

• 10-fold cross validation.

Gradient boosting regression (GBR)

• Based on decision trees and gradient descent algorithm;

• Output parameters are trained in chain;

• 10-fold cross validation.
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Results
Accuracy of different methods

Model
Relative error

<Nu> <TV > <E> <Ω>

ANN 0.009 0.009 0.195 0.114

SVR 0.106 0.020 0.249 0.534

GBR 0.008 0.003 0.137 0.544
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Results
Comparison of frameworks performance on varying number of samples in training dataset.
Results for <Nu>
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Results
Comparison of frameworks performance on varying number of samples in training dataset.
Results for <TV >
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Results
Comparison of frameworks performance on varying number of samples in training dataset.
Results for <E>
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Results
Comparison of frameworks performance on varying number of samples in training dataset.
Results for <Ω>
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Results
Relative prediction error of <Nu> for different combinations of Frh and AH
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Results
Relative prediction error of <TV > for different combinations of Frh and AH
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Results
Relative prediction error of <E> for different combinations of Frh and AH
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Results
Relative prediction error of <Ω> for different combinations of Frh and AH
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Conclusions

• CFD simulations are too computationally expensive to be a
primary tool for HVAC applications.

• Data driven models are capable of providing accurate results
at a low computational cost.

• Data driven models is a promising tool for HVAC applications.
However, more work is required on amplifying prediction range
and tailoring them for HVAC specific requirements.
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Future work

• Amplify the available training data.

• Study how different input configurations affect the quality of
the predictions.

• Find a trade-off between the quantity and the quality of the
training data (turbulence models, discretization error, etc.).

• Explore the extrapolation capabilities of the DDMs.
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THANK YOU FOR YOUR ATTENTION!

Ready for your questions!
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