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Numerical errors in finite differences (FD) of finite volumes (FV) are inherent to the discretization pro-
cess. Diffusion error appears when non-linear or upwinded schemes are used. Aliasing error appears due
to the fact the resulting non-linearity of multiplying modes, which produces modes higher than the cut-
off frequency. Finally, dispersion error appears due to the truncation of the numerical derivative when a
discrete scheme is used, independently of the differential scheme. Regarding this last error, the classical
approach of Tam and Webb [1] and Lele [2] has been used to employ high-order schemes to reduce its
effects. However, this approach cannot handle neither non-linear schemes nor unstructured meshes or
non-uniform ones. More recent approaches, such as Pirozzoli [3] or Fauconnier and Dick [4], have been
able to study the dispersive characteristics of non-linear schemes; however, meshes remained uniform.
Thus, a more general approach that can handle both schemes non-linearity as well as non-regular meshes
would be interesting to study how the combination of differential scheme and mesh affects dispersion.

In this context, this article presents a new methodology able to compute dispersion characteristics. This
method does not require neither uniform mesh spacing nor linear discrete operators. From a practical
point of view, the methodology allows the numerical study of dispersion errors in all kind of meshes,
either non-uniform or unstructured. When evenly spaced one-dimensional meshes are used, the results
obtained with this method coincide with the results when a classical approach is used. In this work, we
present both the theoretical derivation as well as the details of the numerical methodology. We include a
set of results with different meshes in combination with different numerical schemes, considering both
linear and non-linear schemes and low and high-order schemes.
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