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Numerical Dispersion errors: What are they?

Some background on numerical errors

Numerical derivatives do not match analytical ones.

Numerical errors are introduced when equations are discretised.

Numerical Diffusion is well known and is easy to eliminate: central
or symmetric schemes.

If it is not eliminated, the error is proportional to ∆x .
Thus, is easy to reduce: densify mesh.

Numerical Dispersion cannot be avoided, just reduce it.

Except if Spectral Methods are used, where derivative is imposed to
be exact: f ′(k) = kf (k).

How is Numerical Dispersion usually studied? By means of a
Fourier Transform.
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Numerical Dispersion errors: What are they?

Some background on numerical dispersion error

If a Fourier Transform is used, then just periodic domains with
uniform meshes can be studied.

The extrapolation to 3D unstructured domains with generic
boundary conditions is NOT straightforward.

Authors report that conclusions extracted in uniform meshes fail in
slightly stretched meshes.

Not even unstructured; just stretched.

A methodology that allows studying dispersion in a general mesh
would be interesting.

Numerical dispersion is, then, a function of the studied mesh.

Instead of using the sinusoids base, use an orthogonal base extracted
from studied mesh.

For example, eigenvectors of the discrete Laplacian matrix.
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Methodology: Calculus background (I)

Let Φ = {φ−N(x), φ−N+1(x), . . . φ−1(x), φ0(x), φ1(x), . . . φN(x)} be an
orthonormal basis of functions in a domain Ωx .

We can define a mapping T

T : L2(Ωx , x) 7→ C2N+1; T : f (x) 7→ (αm) ∈ C2N+1, where

αm = 〈f |φm〉Ωx
=

∫
Ωx

f (x)φm(x) dx , (1)

And the inverse mapping of T

T−1 : C2N+1 7→ L2(Ωx , x), T : (αm) ∈ C2N+1 7→ f (x).

f (x) ' SN =
N∑

m=−N

αmφm(x); lim
N→∞

SN = f (x). (2)
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Methodology: Calculus background (II)

We can write the derivative of f (x) in terms of the orthonormal basis Φ:

f ′(x) ' S ′N =
N∑

m=−N

αmφ
′
m(x) '

N∑
m=−N

(
αm

N∑
n=−N

γmn φn(x)

)
, (3)

where γmn represent the projections of the derivatives of φm on φn.

We can define a matrix Γ

Where its elements (Γ)mn = γmn = 〈φ′m |φn〉Ωx
. The structure of Γ will

provide information about the errors produced during differentiation.
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Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids (φm = e ikmx) are used as the orthonormal base, such as
Fourier Transform does, then matrix Γ should be:

Γ = diag(km) ∈ I.

However, three different errors could occur:

γmn 6= 0 if m 6= n,

Aliasing

Re(γmm) 6= 0,

Difusion

Im(γmm)

km
6= 1,

Dispersion
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Methodology: Algebra background (I)

Hermitian and Skew-Hermitian matrices

Every matrix A, for example a discrete differential operator, can be
decomposed as the sum of an Hermitian, D, plus skew-Hermitian, C :

C =
1

2
(A− A∗) D =

1

2
(A + A∗) (4)

Expressing the terms of matrix Γ in a discrete way, denoted by γ̃mn, using
aforementioned properties:

γ̃mn = 〈Aφm |φn〉 (5)

Im(γ̃mn) = 〈Cφm |φn〉 =
〈Aφm |φn〉 − 〈φm |Aφn〉

2
(6)

Re(γ̃mn) = 〈Dφm |φn〉 =
〈Aφm |φn〉 + 〈φm |Aφn〉

2
(7)
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Discrete Laplacian eigenvectors

It is the logical choice.

If this has begun with a generalisation of a method that uses Fourier
Transform, it’s logical to employ the discrete version of what Fourier
does: using eigenfunctions of the continuous Laplacian.
In evenly spaced domains, i.e. structured uniform meshes,
eigenvectors are discretised sinusoids.

The set of eigenvectors form an orthonormal base.

In the continuous limit, eigenvectors and eigenvalues colapse onto its
corresponding eigenfunctions, i.e sinusoids.

Retain the concept of mesh connectivity without being restrained to
mesh uniformity.
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Rotation matrix

Sinusoids orthonormal basis have a free parameter: the phase of the
function.

Working in a discrete way, with eigenvectors, this is translated as a
matrix rotation.

This allows to obtain the average of the recovered numerical eigenvalue.

Useful for non-linear operators or when non-uniform meshes are used.

The matrix containing eigenvectors is multiplied by a rotation matrix
with a random phase.

And this is repeated N times (5000) to ensure a correct average.
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Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

Symmetry preserving of 2nd and 6th order {SP2, SP6} Dispersion
relation preserving of 4th and 6th order {DRP4, DRP6}, and Moving
Least squares of 6th order {MLS3}
First-order upwind {UPW}, WENO of 3rd , 5th and 7th order
{WENO3, WENO5, WENO7}, and Superbee {SB}, Van Leer{VL}
and Minmod {MM} flux limiters.

Used meshes

Using 30 one-dimensional stretched meshes:

From 0 to 5% stretching ratio

∆xmin from 1/32 to 1/512.
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Test cases: Results

Stretch. [%] SP2 DRP4 DRP6 SP6 MLS3

0 1 1.7254 1.8368 1.586 1.5615
1 1.203 1.8884 1.9638 1.7688 1.7466
2 1.2396 1.8792 1.9466 1.7704 1.7488
3 1.2501 1.856 1.9239 1.7564 1.7369
4 1.2512 1.8364 1.9018 1.7412 1.7205
5 1.2432 1.8223 1.8748 1.7268 1.708

AVG 1.2374 1.8565 1.9222 1.7527 1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum
eigenvalue for second-order symmetry preserving in uniform meshes, linear
schemes.
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Test cases: Results

Stretch. [%] WENO3 WENO5 WENO7 MM SB VL

0 1.1667 1.3317 1.4529 1.2526 1.4053 1.3237
1 1.3747 1.52 1.6315 1.4713 1.6272 1.543
2 1.4036 1.5402 1.6432 1.4946 1.6444 1.566
3 1.4072 1.5362 1.6377 1.4966 1.637 1.5611
4 1.4047 1.5296 1.6249 1.4973 1.6344 1.5573
5 1.3889 1.5183 1.6132 1.4736 1.6205 1.5374

AVG 1.3958 1.5289 1.6301 1.4867 1.6327 1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum
eigenvalue for first-order upwind in uniform meshes, non-linear schemes.
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Test cases: Computational cost
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Computational cost vs relative error at uniform meshing.

At uniform meshing...

High-order schemes are more cost-effective. They achieve lesser relative
errors than low-order schemes for the same computational cost.
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Computational cost vs relative error at 2% stretching.

At slightly stretched...

All schemes present a higher relative error: High-order lose two order of
magnitude; low-order just one. High-order schemes seem to have lost
order of accuracy. For errors in range, low-order are more cost effective.
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Computational cost vs relative error at 4% stretching

At highly stretched...

All schemes relative error is higher than 1%. Non-linear schemes do not
behave correctly.
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Computational cost vs relative error at 4% stretching

At highly stretched...

All schemes relative error is higher than 1%. Non-linear schemes do not
behave correctly.
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Conclusions

A methodology to compute dispersion error in a general framework has
been developed.

No mesh uniformity nor periodic boundary conditions are required.
Instead, uses the eigenvectors of the discrete Laplacian operator.

A new numerical relation between expected and recovered eigenvalues
has been found for studied schemes.

Stretched meshes, independently on the stretching factor used on
the study range, colapse onto the same plot, which is not the same
that if uniform meshes are used.
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Conclusions

Maximum allowed eigenvalue with minimal dispersion directly related to
maximum mesh size (λ∆xMax < 2).

A maximum allowed frequency related to mesh size does not appear.
Instead, results are mesh dependent.

Low-order schemes are less affected with mesh stretching than high-order
schemes.

High-order schemes loss order of accuracy whereas low-order seem
to keep it.

Further work

Propose a meshing technique leading to dispersion reduction.

Select the most appropiate scheme for a given mesh.
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Thanks for your attention
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