A general method to compute numerical dispersion error

J. Ruano¹, A. Baez Vidal¹, J. Rigola¹, F. X. Trias¹

Heat and Mass Transfer Technological Center (CTTC), Universitat Politècnica de Catalunya – BarcelonaTech (UPC) ESEIAAT

ECCOMAS Congress 2020, January 2021

Index of Contents

2 Methodology

▶ ▲ 토 ▶ 토 = 9 Q Q

э.

Numerical Dispersion errors: What are they?

Some background on numerical errors

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

★ E ▶ ★ E ▶ E = りへ()

Numerical Dispersion errors: What are they?

Some background on numerical errors

- Numerical derivatives do not match analytical ones.
 - Numerical errors are introduced when equations are discretised.

∃ ► ∃ = <0 <0</p>

Numerical Dispersion errors: What are they?

Some background on numerical errors

- Numerical derivatives do not match analytical ones.
 - Numerical errors are introduced when equations are discretised.
- Numerical Diffusion is well known and is easy to eliminate: central or symmetric schemes.
 - If it is not eliminated, the error is proportional to Δx .
 - Thus, is easy to reduce: densify mesh.

∃ ► ∃ = <0 <0</p>

Numerical Dispersion errors: What are they?

Some background on numerical errors

- Numerical derivatives do not match analytical ones.
 - Numerical errors are introduced when equations are discretised.
- Numerical Diffusion is well known and is easy to eliminate: central or symmetric schemes.
 - If it is not eliminated, the error is proportional to Δx .
 - Thus, is easy to reduce: densify mesh.
- Numerical Dispersion cannot be avoided, just reduce it.
 - Except if Spectral Methods are used, where derivative is imposed to be exact: f'(k) = kf(k).

A = A = A = A = A = A

Numerical Dispersion errors: What are they?

Some background on numerical errors

- Numerical derivatives do not match analytical ones.
 - Numerical errors are introduced when equations are discretised.
- Numerical Diffusion is well known and is easy to eliminate: central or symmetric schemes.
 - If it is not eliminated, the error is proportional to Δx .
 - Thus, is easy to reduce: densify mesh.
- Numerical Dispersion cannot be avoided, just reduce it.
 - Except if Spectral Methods are used, where derivative is imposed to be exact: f'(k) = kf(k).
- How is Numerical Dispersion usually studied? By means of a **Fourier Transform.**

A = A = A = A = A < A
</p>

Numerical Dispersion errors: What are they?

Some background on numerical dispersion error

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

⇒ ≥ |= <0 < <>

Numerical Dispersion errors: What are they?

Some background on numerical dispersion error

- If a Fourier Transform is used, then just periodic domains with uniform meshes can be studied.
 - The extrapolation to 3D unstructured domains with generic boundary conditions is NOT straightforward.

SIN NOR

Numerical Dispersion errors: What are they?

Some background on numerical dispersion error

- If a Fourier Transform is used, then just periodic domains with uniform meshes can be studied.
 - The extrapolation to 3D unstructured domains with generic boundary conditions is NOT straightforward.
- Authors report that conclusions extracted in uniform meshes fail in slightly stretched meshes.
 - Not even unstructured; just stretched.

EL OQO

Numerical Dispersion errors: What are they?

Some background on numerical dispersion error

- If a Fourier Transform is used, then just periodic domains with uniform meshes can be studied.
 - The extrapolation to 3D unstructured domains with generic boundary conditions is NOT straightforward.
- Authors report that conclusions extracted in uniform meshes fail in slightly stretched meshes.
 - Not even unstructured; just stretched.
- A methodology that allows studying dispersion in a general mesh would be interesting.
 - Numerical dispersion is, then, a function of the studied mesh.

A = A = A = A = A = A = A

Numerical Dispersion errors: What are they?

Some background on numerical dispersion error

- If a Fourier Transform is used, then just periodic domains with uniform meshes can be studied.
 - The extrapolation to 3D unstructured domains with generic boundary conditions is NOT straightforward.
- Authors report that conclusions extracted in uniform meshes fail in slightly stretched meshes.
 - Not even unstructured; just stretched.
- A methodology that allows studying dispersion in a general mesh would be interesting.
 - Numerical dispersion is, then, a function of the studied mesh.
- Instead of using the sinusoids base, use an orthogonal base extracted from studied mesh.
 - For example, eigenvectors of the discrete Laplacian matrix.

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (I)

Let $\Phi = \{\phi_{-N}(x), \phi_{-N+1}(x), \dots, \phi_{-1}(x), \phi_0(x), \phi_1(x), \dots, \phi_N(x)\}$ be an orthonormal basis of functions in a domain Ω_x .

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (I)

Let $\Phi = \{\phi_{-N}(x), \phi_{-N+1}(x), \dots \phi_{-1}(x), \phi_0(x), \phi_1(x), \dots \phi_N(x)\}$ be an orthonormal basis of functions in a domain Ω_x .

We can define a mapping T

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (I)

Let $\Phi = \{\phi_{-N}(x), \phi_{-N+1}(x), \dots, \phi_{-1}(x), \phi_0(x), \phi_1(x), \dots, \phi_N(x)\}$ be an orthonormal basis of functions in a domain Ω_x .

We can define a mapping T

$$\mathcal{T}:\mathcal{L}^2(\Omega_x,x)\mapsto\mathbb{C}^{2N+1};\;\mathcal{T}:f(x)\mapsto(lpha_m)\in\mathbb{C}^{2N+1}$$
, where

$$\alpha_m = \langle f | \phi_m \rangle_{\Omega_x} = \int_{\Omega_x} f(x) \overline{\phi_m}(x) \, dx, \qquad (1)$$

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (I)

Let $\Phi = \{\phi_{-N}(x), \phi_{-N+1}(x), \dots, \phi_{-1}(x), \phi_0(x), \phi_1(x), \dots, \phi_N(x)\}$ be an orthonormal basis of functions in a domain Ω_x .

We can define a mapping T

$$\mathcal{T}:\mathcal{L}^2(\Omega_x,x)\mapsto\mathbb{C}^{2N+1};\ \mathcal{T}:f(x)\mapsto(lpha_m)\in\mathbb{C}^{2N+1},$$
 where

$$\alpha_m = \langle f | \phi_m \rangle_{\Omega_x} = \int_{\Omega_x} f(x) \overline{\phi_m}(x) \, dx, \qquad (1)$$

And the inverse mapping of T

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (I)

Let $\Phi = \{\phi_{-N}(x), \phi_{-N+1}(x), \dots, \phi_{-1}(x), \phi_0(x), \phi_1(x), \dots, \phi_N(x)\}$ be an orthonormal basis of functions in a domain Ω_x .

We can define a mapping T

$$\mathcal{T}:\mathcal{L}^2(\Omega_x,x)\mapsto\mathbb{C}^{2N+1};\ \mathcal{T}:f(x)\mapsto(lpha_m)\in\mathbb{C}^{2N+1},$$
 where

$$\alpha_m = \langle f \mid \phi_m \rangle_{\Omega_x} = \int_{\Omega_x} f(x) \overline{\phi_m}(x) \, dx, \tag{1}$$

And the inverse mapping of T

$$\mathcal{T}^{-1}: \mathbb{C}^{2N+1} \mapsto \mathcal{L}^2(\Omega_x, x), \ \mathcal{T}: (\alpha_m) \in \mathbb{C}^{2N+1} \mapsto f(x).$$

$$f(x) \simeq S_N = \sum_{m=-N}^{N} \alpha_m \phi_m(x); \quad \lim_{N \to \infty} S_N = f(x). \tag{2}$$

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (II)

We can write the derivative of f(x) in terms of the orthonormal basis Φ :

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

□ > < E > < E > E = の < ○

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (II)

We can write the derivative of f(x) in terms of the orthonormal basis Φ :

$$f'(x) \simeq S'_N = \sum_{m=-N}^N \alpha_m \phi'_m(x) \simeq \sum_{m=-N}^N \left(\alpha_m \sum_{n=-N}^N \gamma_{mn} \phi_n(x) \right), \quad (3)$$

where γ_{mn} represent the projections of the derivatives of ϕ_m on ϕ_n .

同 トイヨト イヨト ヨヨ のくや

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (II)

We can write the derivative of f(x) in terms of the orthonormal basis Φ :

$$f'(x) \simeq S'_N = \sum_{m=-N}^N \alpha_m \phi'_m(x) \simeq \sum_{m=-N}^N \left(\alpha_m \sum_{n=-N}^N \gamma_{mn} \phi_n(x) \right), \quad (3)$$

where γ_{mn} represent the projections of the derivatives of ϕ_m on ϕ_n .

We can define a matrix Γ

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (II)

We can write the derivative of f(x) in terms of the orthonormal basis Φ :

$$f'(x) \simeq S'_N = \sum_{m=-N}^N \alpha_m \phi'_m(x) \simeq \sum_{m=-N}^N \left(\alpha_m \sum_{n=-N}^N \gamma_{mn} \phi_n(x) \right), \quad (3)$$

where γ_{mn} represent the projections of the derivatives of ϕ_m on ϕ_n .

We can define a matrix Γ

Where its elements $(\Gamma)_{mn} = \gamma_{mn} = \langle \phi'_m | \phi_n \rangle_{\Omega_x}$. The structure of Γ will provide information about the errors produced during differentiation.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

★ E ▶ ★ E ▶ E = りへ()

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

•
$$\gamma_{mn} \neq 0$$
 if $m \neq n$,

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

•
$$\gamma_{mn} \neq 0$$
 if $m \neq n$,

•
$$Re(\gamma_{mm}) \neq 0$$
,

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

•
$$\gamma_{mn} \neq 0$$
 if $m \neq n$,

•
$$Re(\gamma_{mm}) \neq 0$$
,
• $\frac{Im(\gamma_{mm})}{k_m} \neq 1$,

⇒ ↓ ≡ ↓ ≡ | = √Q ∩

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

• $\gamma_{mn} \neq 0$ if $m \neq n$, Aliasing

•
$$Re(\gamma_{mm}) \neq 0$$
,
• $\frac{Im(\gamma_{mm})}{k_m} \neq 1$,

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

•
$$\gamma_{mn} \neq 0$$
 if $m \neq n$,

•
$$Re(\gamma_{mm}) \neq 0$$
, Difusion
• $\frac{Im(\gamma_{mm})}{k_m} \neq 1$,

A = A = A = A = A = A

Calculus background Algebra background Orthonormal basis Phase

Methodology: Calculus background (III)

Some calculus background: Example with sinusoids

If sinusoids $(\phi_m = e^{ik_m x})$ are used as the orthonormal base, such as Fourier Transform does, then matrix Γ should be:

$$\Gamma = diag(k_m) \in \mathbb{I}.$$

However, three different errors could occur:

•
$$\gamma_{mn} \neq 0$$
 if $m \neq n$,

•
$$Re(\gamma_{mm}) \neq 0$$
,
• $\frac{Im(\gamma_{mm})}{k_m} \neq 1$, Dispersion

A = A = A = A = A = A

Calculus background Algebra background Orthonormal basis Phase

Methodology: Algebra background (I)

Hermitian and Skew-Hermitian matrices

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

□ > * ミ > * ミ > ミ = * の < @

Calculus background Algebra background Orthonormal basis Phase

Methodology: Algebra background (I)

Hermitian and Skew-Hermitian matrices

Every matrix A, for example a discrete differential operator, can be decomposed as the sum of an Hermitian, D, plus skew-Hermitian, C:

B A B A B B B A A A

Calculus background Algebra background Orthonormal basis Phase

Methodology: Algebra background (I)

Hermitian and Skew-Hermitian matrices

Every matrix A, for example a discrete differential operator, can be decomposed as the sum of an Hermitian, D, plus skew-Hermitian, C:

$$C = \frac{1}{2}(A - A^*)$$
 $D = \frac{1}{2}(A + A^*)$ (4)

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Calculus background Algebra background Orthonormal basis Phase

Methodology: Algebra background (I)

Hermitian and Skew-Hermitian matrices

Every matrix A, for example a discrete differential operator, can be decomposed as the sum of an Hermitian, D, plus skew-Hermitian, C:

$$C = \frac{1}{2}(A - A^*)$$
 $D = \frac{1}{2}(A + A^*)$ (4)

↓ ⇒ ↓ ≤ ↓ ≤ | ≤ √Q ()

Expressing the terms of matrix Γ in a discrete way, denoted by $\widetilde{\gamma_{mn}}$, using aforementioned properties:

Calculus background Algebra background Orthonormal basis Phase

Methodology: Algebra background (I)

Hermitian and Skew-Hermitian matrices

Every matrix A, for example a discrete differential operator, can be decomposed as the sum of an Hermitian, D, plus skew-Hermitian, C:

$$C = \frac{1}{2}(A - A^*)$$
 $D = \frac{1}{2}(A + A^*)$ (4)

Expressing the terms of matrix Γ in a discrete way, denoted by $\widetilde{\gamma_{mn}}$, using aforementioned properties:

$$\widetilde{\gamma_{mn}} = \langle A\phi_m \, | \, \phi_n \rangle \tag{5}$$

$$Im(\widetilde{\gamma_{mn}}) = \langle C\phi_m | \phi_n \rangle = \frac{\langle A\phi_m | \phi_n \rangle - \langle \phi_m | A\phi_n \rangle}{2}$$
(6)

$$Re(\widetilde{\gamma_{mn}}) = \langle D\phi_m | \phi_n \rangle = \frac{\langle A\phi_m | \phi_n \rangle + \langle \phi_m | A\phi_n \rangle}{2}$$
(7)

Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

→ □ → → 三 → → 三 → → へ ○
Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

• It is the logical choice.

<□> < => < => < => < =| = <0 < 0

Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

- It is the logical choice.
 - If this has begun with a generalisation of a method that uses Fourier Transform, it's logical to employ the discrete version of what Fourier does: using eigenfunctions of the continuous Laplacian.

Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

- It is the logical choice.
 - If this has begun with a generalisation of a method that uses Fourier Transform, it's logical to employ the discrete version of what Fourier does: using eigenfunctions of the continuous Laplacian.
 - In evenly spaced domains, i.e. structured uniform meshes, eigenvectors are discretised sinusoids.

しゃ くます くます ほしょ めくや

Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

- It is the logical choice.
 - If this has begun with a generalisation of a method that uses Fourier Transform, it's logical to employ the discrete version of what Fourier does: using eigenfunctions of the continuous Laplacian.
 - In evenly spaced domains, i.e. structured uniform meshes, eigenvectors are discretised sinusoids.
- The set of eigenvectors form an orthonormal base.

Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

- It is the logical choice.
 - If this has begun with a generalisation of a method that uses Fourier Transform, it's logical to employ the discrete version of what Fourier does: using eigenfunctions of the continuous Laplacian.
 - In evenly spaced domains, i.e. structured uniform meshes, eigenvectors are discretised sinusoids.
- The set of eigenvectors form an orthonormal base.
- In the continuous limit, eigenvectors and eigenvalues colapse onto its corresponding eigenfunctions, i.e sinusoids.

伺 ト イヨ ト イヨ ト ヨ ヨ うくや

Calculus background Algebra background Orthonormal basis Phase

Methodology: Orthonormal basis

Discrete Laplacian eigenvectors

- It is the logical choice.
 - If this has begun with a generalisation of a method that uses Fourier Transform, it's logical to employ the discrete version of what Fourier does: using eigenfunctions of the continuous Laplacian.
 - In evenly spaced domains, i.e. structured uniform meshes, eigenvectors are discretised sinusoids.
- The set of eigenvectors form an orthonormal base.
- In the continuous limit, eigenvectors and eigenvalues colapse onto its corresponding eigenfunctions, i.e sinusoids.
- Retain the concept of mesh connectivity without being restrained to mesh uniformity.

同 トイヨト イヨト ヨヨ のくや

Calculus background Algebra background Orthonormal basis Phase

Methodology: Eigenvectors example

★ E ▶ ★ E ▶ E = りへで

- T

Calculus background Algebra background Orthonormal basis Phase

Methodology: Eigenvectors example

< 三 × 三 × 三 × < 三 ×

Calculus background Algebra background Orthonormal basis Phase

Methodology: Eigenvectors example

< 三 × 三 × 三 × < 三 ×

Calculus background Algebra background Orthonormal basis Phase

Methodology: Phase

Rotation matrix

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

Calculus background Algebra background Orthonormal basis Phase

Methodology: Phase

Rotation matrix

Sinusoids orthonormal basis have a free parameter: the phase of the function.

• Working in a discrete way, with eigenvectors, this is translated as a matrix rotation.

▲□ → ▲ □ → ▲ □ → □ □ → ○ ○ ○

Calculus background Algebra background Orthonormal basis Phase

Methodology: Phase

Rotation matrix

Sinusoids orthonormal basis have a free parameter: the phase of the function.

• Working in a discrete way, with eigenvectors, this is translated as a matrix rotation.

This allows to obtain the average of the recovered numerical eigenvalue.

• Useful for non-linear operators or when non-uniform meshes are used.

同 トイヨト イヨト ヨヨ のくや

Calculus background Algebra background Orthonormal basis Phase

Methodology: Phase

Rotation matrix

Sinusoids orthonormal basis have a free parameter: the phase of the function.

• Working in a discrete way, with eigenvectors, this is translated as a matrix rotation.

This allows to obtain the average of the recovered numerical eigenvalue.

• Useful for non-linear operators or when non-uniform meshes are used.

The matrix containing eigenvectors is multiplied by a rotation matrix with a random phase.

• And this is repeated N times (5000) to ensure a correct average.

▲□ → ▲ □ → ▲ □ → □ □ → ○ ○ ○

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

▲御▶ ▲臣▶ ▲臣▶ 臣国 のへで

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

< E ▶ < E ▶ E = のQ (~

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

• Symmetry preserving of 2nd and 6th order {SP2, SP6} Dispersion relation preserving of 4th and 6th order {DRP4, DRP6}, and Moving Least squares of 6th order {MLS3}

▲ Ξ ► Ξ Ξ < • < • </p>

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

- Symmetry preserving of 2nd and 6th order {SP2, SP6} Dispersion relation preserving of 4th and 6th order {DRP4, DRP6}, and Moving Least squares of 6th order {MLS3}
- First-order upwind {UPW}, WENO of 3rd, 5th and 7th order {WENO3, WENO5, WENO7}, and Superbee {SB}, Van Leer{VL} and Minmod {MM} flux limiters.

A = A = A = A = A = A

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

- Symmetry preserving of 2nd and 6th order {SP2, SP6} Dispersion relation preserving of 4th and 6th order {DRP4, DRP6}, and Moving Least squares of 6th order {MLS3}
- First-order upwind {UPW}, WENO of 3rd, 5th and 7th order {WENO3, WENO5, WENO7}, and Superbee {SB}, Van Leer{VL} and Minmod {MM} flux limiters.

Used meshes

Using 30 one-dimensional stretched meshes:

伺 ト イヨ ト イヨ ト ヨ ヨ つくや

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

- Symmetry preserving of 2nd and 6th order {SP2, SP6} Dispersion relation preserving of 4th and 6th order {DRP4, DRP6}, and Moving Least squares of 6th order {MLS3}
- First-order upwind {UPW}, WENO of 3rd, 5th and 7th order {WENO3, WENO5, WENO7}, and Superbee {SB}, Van Leer{VL} and Minmod {MM} flux limiters.

Used meshes

Using 30 one-dimensional stretched meshes:

• From 0 to 5% stretching ratio

同 ト イヨ ト イヨ ト ヨ ヨ つくや

Selected cases Results Computational cost

Test cases: Selected cases

Used schemes

Mixture of linear and non-linear schemes:

- Symmetry preserving of 2nd and 6th order {SP2, SP6} Dispersion relation preserving of 4th and 6th order {DRP4, DRP6}, and Moving Least squares of 6th order {MLS3}
- First-order upwind {UPW}, WENO of 3rd, 5th and 7th order {WENO3, WENO5, WENO7}, and Superbee {SB}, Van Leer{VL} and Minmod {MM} flux limiters.

Used meshes

Using 30 one-dimensional stretched meshes:

- From 0 to 5% stretching ratio
- Δx_{min} from 1/32 to 1/512.

同 ト イヨ ト イヨ ト ヨ ヨ つくや

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Uniform mesh.

三日 のへで

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Uniform mesh.

$$\lambda_{an} = \frac{4}{\Delta x} \sin^2 \left(k_{an} \Delta x \right)$$

三日 のへで

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Until 1% stretching.

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Until 2% stretching.

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Until 3% stretching.

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Until 4% stretching.

Selected cases Results Computational cost

Test cases: Results

Left: Numerical eigenvalues. Right: Numerical wavenumbers. Until 5% stretching.

Selected cases Results Computational cost

Test cases: Results

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

Selected cases Results Computational cost

Test cases: Results

ミト ▲ ミト 三日 つくぐ

4 A >

Selected cases Results Computational cost

Test cases: Results

3

三日 のへで

Selected cases Results Computational cost

Test cases: Results

 $\exists \rightarrow$

三日 のへぐ

Selected cases Results Computational cost

Test cases: Results

э

三日 のへで

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	SP2	DRP4	DRP6	SP6	MLS3
0	1	1.7254	1.8368	1.586	1.5615
1	1.203	1.8884	1.9638	1.7688	1.7466
2	1.2396	1.8792	1.9466	1.7704	1.7488
3	1.2501	1.856	1.9239	1.7564	1.7369
4	1.2512	1.8364	1.9018	1.7412	1.7205
5	1.2432	1.8223	1.8748	1.7268	1.708
AVG	1.2374	1.8565	1.9222	1.7527	1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	SP2	DRP4	DRP6	SP6	MLS3
0	1	1.7254	1.8368	1.586	1.5615
1	1.203	1.8884	1.9638	1.7688	1.7466
2	1.2396	1.8792	1.9466	1.7704	1.7488
3	1.2501	1.856	1.9239	1.7564	1.7369
4	(1.2512)) 1.8364	1.9018	1.7412	1.7205
5	1.2432	1.8223	1.8748	1.7268	1.708
AVG	1.2374	1.8565	1.9222	1.7527	1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	SP2	DRP4	DRP6	SP6	MLS3
0	1	1.7254	1.8368	1.586	1.5615
1	1.203 (1.8884) 1.9638	1.7688	1.7466
2	1.2396	1.8792	1.9466	1.7704	1.7488
3	1.2501	1.856	1.9239	1.7564	1.7369
4	〔1.2512〕) 1.8364	1.9018	1.7412	1.7205
5	1.2432	1.8223	1.8748	1.7268	1.708
AVG	1.2374	1.8565	1.9222	1.7527	1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	SP2	DRP4	DRP6	SP6	MLS3
0	1	1.7254	1.8368	1.586	1.5615
1	1.203 (1.8884	〔1.9638〕) 1.7688	1.7466
2	1.2396	1.8792	1.9466	1.7704	1.7488
3	1.2501	1.856	1.9239	1.7564	1.7369
4	〔1.2512〕) 1.8364	1.9018	1.7412	1.7205
5	1.2432	1.8223	1.8748	1.7268	1.708
AVG	1.2374	1.8565	1.9222	1.7527	1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.
Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	SP2	DRP4	DRP6	SP6	<i>MLS</i> 3
0	1	1.7254	1.8368	1.586	1.5615
1	1.203 (1.8884	〔1.9638〕	1.7688	1.7466
2	1.2396	1.8792	1.9466	1.7704) 1.7488
3	1.2501	1.856	1.9239	1.7564	1.7369
4	〔1.2512〕) 1.8364	1.9018	1.7412	1.7205
5	1.2432	1.8223	1.8748	1.7268	1.708
AVG	1.2374	1.8565	1.9222	1.7527	1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	SP2	DRP4	DRP6	SP6	MLS3
0	1	1.7254	1.8368	1.586	1.5615
1	1.203 (1.8884	1.9638	1.7688	1.7466
2	1.2396	1.8792	1.9466	1.7704	〔1.7488〕
3	1.2501	1.856	1.9239	1.7564	1.7369
4	(1.2512)) 1.8364	1.9018	1.7412	1.7205
5	1.2432	1.8223	1.8748	1.7268	1.708
AVG	1.2374	1.8565	1.9222	1.7527	1.7322

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.

同 トイヨト イヨト ヨヨ のくや

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	MM	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	1.5402	1.6432	1.4946	1.6444	1.566
3	1.4072	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249	1.4973	1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	MM	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	1.5402	1.6432	1.4946	1.6444	1.566
3	(1.4072)	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249	1.4973	1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	MM	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	(1.5402)	1.6432	1.4946	1.6444	1.566
3	(1.4072)	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249	1.4973	1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	ММ	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	(1.5402)	(1.6432)	1.4946	1.6444	1.566
3	(1.4072)	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249	1.4973	1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	MM	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	(1.5402)	(1.6432)	1.4946	1.6444	1.566
3	(1.4072)	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249 (1.4973) 1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	MM	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	(1.5402)	(1.6432)	1.4946 (1.6444) 1.566
3	(1.4072)	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249 🤇	1.4973) 1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Results

Stretch. [%]	WENO3	WENO5	WENO7	MM	SB	VL
0	1.1667	1.3317	1.4529	1.2526	1.4053	1.3237
1	1.3747	1.52	1.6315	1.4713	1.6272	1.543
2	1.4036	(1.5402)	(1.6432)	1.4946 (1.6444	1.566
3	(1.4072)	1.5362	1.6377	1.4966	1.637	1.5611
4	1.4047	1.5296	1.6249 (1.4973) 1.6344	1.5573
5	1.3889	1.5183	1.6132	1.4736	1.6205	1.5374
AVG	1.3958	1.5289	1.6301	1.4867	1.6327	1.553

Table: Non-dimensional maximum eigenvalue normalized respect maximum eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Selected cases Results Computational cost

Test cases: Computational cost

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

□ > < E > < E > E = のへで

Numerical Dispersion errors: What are they? Methodology Test cases

Selected cases Results Computational cost

Test cases: Computational cost

Computational cost vs relative error at uniform meshing.

< 口 > < 同 >

< E ▶ < E ▶ E = のQ (~

Selected cases Results Computational cost

Test cases: Computational cost

Computational cost vs relative error at uniform meshing.

At uniform meshing ...

High-order schemes are more cost-effective. They achieve lesser relative errors than low-order schemes for the same computational cost.

ELE DOC

Selected cases Results Computational cost

Test cases: Computational cost

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

□ > < E > < E > E = のへで

Selected cases Results Computational cost

Test cases: Computational cost

Computational cost vs relative error at 2% stretching.

~

▶ ▲ 토 ▶ 토 = 9 Q Q

Selected cases Results Computational cost

Test cases: Computational cost

Computational cost vs relative error at 2% stretching.

At slightly stretched...

All schemes present a higher relative error: High-order lose two order of magnitude; low-order just one. High-order schemes seem to have lost order of accuracy. For errors in range, low-order are more cost effective.

三日 のへの

Selected cases Results Computational cost

Test cases: Computational cost

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

□ > < E > < E > E = のへで

Numerical Dispersion errors: What are they? Methodology Test cases

Selected cases Results Computational cost

Test cases: Computational cost

Computational cost vs relative error at 4% stretching

三日 のへで

글 제 제 글 제 .

Numerical Dispersion errors: What are they? Methodology Test cases

Selected cases Results Computational cost

Test cases: Computational cost

Computational cost vs relative error at 4% stretching

At highly stretched...

All schemes relative error is higher than 1%. Non-linear schemes do not behave correctly.

э

JI NOR

Conclusions and further work

Conclusions

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

Conclusions and further work

Conclusions

A methodology to compute dispersion error in a general framework has been developed.

• No mesh uniformity nor periodic boundary conditions are required. Instead, uses the eigenvectors of the **discrete Laplacian operator**.

Conclusions and further work

Conclusions

A methodology to compute dispersion error in a general framework has been developed.

• No mesh uniformity nor periodic boundary conditions are required. Instead, uses the eigenvectors of the **discrete Laplacian operator**.

A new numerical relation between expected and recovered eigenvalues has been found for studied schemes.

• Stretched meshes, independently on the stretching factor used on the study range, colapse onto the **same plot**, which is not the same that if uniform meshes are used.

∃ ► ★ ∃ ► ∃ = • • • • • •

Conclusions and further work

Conclusions

J. Ruano, A. Baez Vidal, J. Rigola, F. X. Trias A general method to compute numerical dispersion error

Conclusions and further work

Conclusions

Maximum allowed eigenvalue with minimal dispersion directly related to maximum mesh size $(\lambda \Delta x_{Max} < 2)$.

• A maximum allowed frequency related to mesh size does not appear. Instead, results are mesh dependent.

▶ < ∃ ▶ ∃|∃ < <</p>

Conclusions and further work

Conclusions

Maximum allowed eigenvalue with minimal dispersion directly related to maximum mesh size $(\lambda \Delta x_{Max} < 2)$.

• A maximum allowed frequency related to mesh size does not appear. Instead, results are mesh dependent.

Low-order schemes are less affected with mesh stretching than high-order schemes.

• High-order schemes **loss order of accuracy** whereas low-order seem to keep it.

⇒ ↓ ≡ ↓ ≡ | = √Q ∩

Conclusions and further work

Conclusions

Maximum allowed eigenvalue with minimal dispersion directly related to maximum mesh size $(\lambda \Delta x_{Max} < 2)$.

• A maximum allowed frequency related to mesh size does not appear. Instead, results are mesh dependent.

Low-order schemes are less affected with mesh stretching than high-order schemes.

• High-order schemes **loss order of accuracy** whereas low-order seem to keep it.

Further work

Conclusions and further work

Conclusions

Maximum allowed eigenvalue with minimal dispersion directly related to maximum mesh size $(\lambda \Delta x_{Max} < 2)$.

• A maximum allowed frequency related to mesh size does not appear. Instead, results are mesh dependent.

Low-order schemes are less affected with mesh stretching than high-order schemes.

• High-order schemes **loss order of accuracy** whereas low-order seem to keep it.

Further work

Propose a meshing technique leading to dispersion reduction.

• Select the most appropiate scheme for a given mesh.

同 トイヨト イヨト ヨヨ のくや

Thanks for your attention