ON THE INTERPOLATION PROBLEM FOR THE POISSON EQUATION ON COLLOCATED MESHES

D. Santos, J. Muela, N. Valle and F. X. Trias

Heat and Mass Transfer Technological Center, Technical University of Catalonia, C/Colom 11, 08222 Terrassa (Barcelona)

Key Words: Collocated meshes, Poisson equation, Stability, Unstructured meshes

Finite-volume collocated discretizations on unstructured meshes is the solution adopted for most of the general-purpose CFD codes such as ANSYS-FLUENT, OpenFOAM, etc. Despite the intrinsic errors due to the improper pressure gradient formulation, this approach is usually preferred over a staggered one due to its simple form. In this context, a fully-conservative discretization method for general unstructured grids was proposed in [1]: it exactly preserves the symmetries of the underlying differential operators on a collocated mesh. Likewise other collocated codes, to suppress the well-known checkerboard problem the Poisson equation is solved using a compact stencil. Using the same notation than in [1], this reads

$$\mathsf{L}p_c = \mathsf{M}u_s^p \tag{1}$$

where $L = -M\Omega_s^{-1}M^T$ is the Laplacian operator, p_c is the cell-centered pressure field, u_s^p is a face-normal velocity and Ω_s is a diagonal matrix that contains the staggered control volumes. For staggered velocity fields, the projection onto a divergence-free space is a well-posed problem. This is not the case for collocated velocity fields. Namely, cell-centered velocity field, u_c^p , needs to be interpolated to the faces, $u_s^p = \Gamma_{c \to s} u_c^p$ using a cell-to-face interpolation, $\Gamma_{s \to c}$. Then, the staggered gradient, $Gp_c = -\Omega_s^{-1}M^T$, of the pressure field obtained by solving Eq.(1) must be interpolated back to the cells. Namely, the overall procedure can be compactly written as follows

$$u_c^{n+1} = (\mathbf{I} + \Omega_c^{-1} \Gamma_{c \to s}^T \mathbf{M}^T \mathbf{L}^{-1} \mathbf{M} \Gamma_{c \to s}) u_c^p.$$
⁽²⁾

The new cell-centered velocity field will not be exactly incompressible, $M\Gamma_{c\to s}u_c^{n+1} = \approx 0_c$, and the overall procedure will inevitable introduce some artificial dissipation. Apart from this well-known drawbacks of using collocated formulations, instability issues may also appear for highly distorted meshes. Namely, let us consider that we recursively apply the pseudo-projection given in Eq.(2). Then, we obtain

$$\mathsf{L}p_c^{n+1} = \mathsf{M}u_s^p + (\mathsf{L} - \mathsf{L}_c)p_c^n,\tag{3}$$

where $L_c \equiv -M\Gamma_{c\to s}\Omega_c^{-1}\Gamma_{c\to s}^T M^T$ is the non-compact Laplacian operator. This can be viewed like a stationary iterative solver. The stability of this process will depend on the eigenvalues of $(L - L_c)$, which subsequently depend on the interpolation operators. This will be carefully analysed and results for general unstructured grids will be presented.

REFERENCES

 F. X. Trias, O. Lehmkuhl, A. Oliva, C.D. Pérez-Segarra, and R.W.C.P. Verstappen. Symmetrypreserving discretization of Navier-Stokes equations on collocated unstructured meshes. *Journal of Computational Physics*, 258:246–267, 2014.