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Finite-volume collocated discretizations on unstructured meshes is the solution adopted for most of the
general-purpose CFD codes such as ANSYS-FLUENT, OpenFOAM, etc. Despite the intrinsic errors due
to the improper pressure gradient formulation, this approach is usually preferred over a staggered one due
to its simple form. In this context, a fully-conservative discretization method for general unstructured
grids was proposed in [1]: it exactly preserves the symmetries of the underlying differential operators on
a collocated mesh. Likewise other collocated codes, to suppress the well-known checkerboard problem
the Poisson equation is solved using a compact stencil. Using the same notation than in [1], this reads

Lpc = Mup
s (1)

where L=−MΩ−1
s MT is the Laplacian operator, pc is the cell-centered pressure field, up

s is a face-normal
velocity and Ωs is a diagonal matrix that contains the staggered control volumes. For staggered velocity
fields, the projection onto a divergence-free space is a well-posed problem. This is not the case for
collocated velocity fields. Namely, cell-centered velocity field, up

c , needs to be interpolated to the faces,
up

s = Γc→su
p
c using a cell-to-face interpolation, Γs→c. Then, the staggered gradient, Gpc =−Ω−1

s MT , of
the pressure field obtained by solving Eq.(1) must be interpolated back to the cells. Namely, the overall
procedure can be compactly written as follows

un+1
c = (I+Ω−1

c Γ
T
c→sM

T L−1MΓc→s)up
c . (2)

The new cell-centered velocity field will not be exactly incompressible, MΓc→sun+1
c =≈ 0c, and the over-

all procedure will inevitable introduce some artificial dissipation. Apart from this well-known drawbacks
of using collocated formulations, instability issues may also appear for highly distorted meshes. Namely,
let us consider that we recursively apply the pseudo-projection given in Eq.(2). Then, we obtain

Lpn+1
c = Mup

s +(L−Lc)pn
c , (3)

where Lc ≡ −MΓc→sΩ
−1
c ΓT

c→sM
T is the non-compact Laplacian operator. This can be viewed like a

stationary iterative solver. The stability of this process will depend on the eigenvalues of (L− Lc),
which subsequently depend on the interpolation operators. This will be carefully analysed and results
for general unstructured grids will be presented.
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