14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020

Virtual Congress: 11-15 January 2021

F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

NUMA-AWARE STRATEGIES FOR THE HETEROGENEOUS
EXECUTION OF SPMV ON MODERN SUPERCOMPUTERS

Xavier Alvarez-Farré!, Andrey Gorobets?, F. Xavier Trias' and Assensi Oliva!

! Technical University of Catalonia,
Heat and Mass Transfer Technological Center,
Carrer Colom 11, 08222 Terrassa (Barcelona), Spain
{xavier.alvarez.farre, francesc.xavier.trias, asensio.oliva} @upc.edu

2 Keldysh Institute of Applied Mathematics,
Miusskaya Sq. 4, 125047 Moscow, Russia
andrey.gorobets @ gmail.com

Key words: High-performance computing, sparse algebra, SpMV, NUMA, heterogeneous
computing

Abstract. The sparse matrix-vector product is a widespread operation amongst the scientific
computing community. It represents the dominant computational cost in many large-scale sim-
ulations relying on iterative methods, and its performance is sensitive to the sparse pattern, the
storage format and kernel implementation, and the target computing architecture. In this work,
we are devoted to the efficient execution of the sparse matrix-vector product on (potentially
hybrid) modern supercomputers with non-uniform memory access configurations. A hierarchi-
cal parallel implementation is proposed to minimise the number of processes participating in
distributed-memory parallelisation. As a result, a single process per computing node is enough
to engage all its hardware and ensure efficient memory access on manycore platforms. The
benefits of this approach have been demonstrated on up to 9,600 cores of MareNostrum 4 su-
percomputer, at Barcelona Supercomputing Center.

1 INTRODUCTION

Large sparse matrices arise in the numerical resolution of partial differential equations. The
sparse pattern of these matrices (i.e., the distribution of the non-zero coefficients) depends on
the spatial discretisation of a computational domain and the numerical method employed. The
sparse matrix-vector product (SpMV) is, therefore, a widespread operation amongst the scien-
tific computing community. Indeed, SpMV kernel represents the dominant computational cost
in many large-scale simulations relying on iterative methods.

The performance of the SpMV kernel is sensitive to the sparse pattern (application), the stor-
age format and kernel design (software), and the computing architecture (hardware). It is one
of such memory-bound kernels with a very low arithmetic intensity, that is the ratio of float-
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ing point operations (FLOP) to memory traffic in bytes (around 1:8 FLOP per byte), and often
leads to irregular, uncoalesced memory accesses reducing the memory access efficiency. To
top it off, in distributed-memory parallel processing, vector elements and matrix rows are dis-
tributed among a group of processes and this induces data exchanges between them. Therefore,
the efficient execution of SpMV requires a fine-tuning process (e.g., right choice of the sparse
matrix storage format, proper workload balancing, reordering of unknowns to reduce matrix
bandwidth, optimizing memory access to minimize cache misses).

Significant effort is devoted to the optimization of the SpMV for different applications and
state-of-the-art computing environments. For instance, the introduction of the graphics process-
ing unit (GPU) architecture into high-performance computing (HPC) systems motivated the re-
search of new sparse matrix storage formats and SpMV implementations [1, 2] as reviewed by
Filippone et al. [3]]. The continuous evolution of central processing units (CPUs) also motivates
the research for efficient SpMV kernels on such architectures [4, 15, 6].

In this work, we are devoted to the implementation of the SpMV kernel on hybrid systems
with non-uniform memory access (NUMA) configurations, which were ignored in our previ-
ous implementations [7]]. Ironically, when processors became faster than memory and started
suffering from serious data starvation, vendors featured multi-core architectures and exacer-
bated the problem. Ever since multiple processors had to fight for memory access. The aim for
NUMA configurations, introduced three decades ago [8]], was to alleviate this conflict by provid-
ing separate memory banks and controllers for each processor or group of processors. Namely,
NUMA allows for faster access to local memory at the expenses of slower access to remote
memory. To deal with such configurations, some authors rely on message-passing interface
(MP]) (i.e., assigning at least one MPI rank per NUMA node, even one per core) which leads
to a compact data placement and ensures an efficient memory usage [9, [10} [11} 16]. However,
these approaches do not exploit the underlying shared-memory paradigm at their best. Instead,
they increase the number of processes participating in data exchanges and the global size of
the messages. Other authors have proposed NUMA-aware implementations which depend on
runtime data migrations [[12]]. Instead, our approach relies on a predictive parallel initialisation
by first-touch policy, similar to that of [13} 5], but it is also compatible with heterogeneous
computing.

2 NUMA-AWARE, HIERARCHICAL PARALLELISATION OF THE SPMV KERNEL
2.1 Overview of modern supercomputers

A quick look at the world’s fastest supercomputers reveals the huge variety of computing
architectures competing in the exascale race. Modern supercomputers consist of multiple (po-
tentially hybrid) nodes and usually introduce NUMA configurations (cf. Figure [T)). Hybrid
nodes combine different architectures, such as manycore CPU and GPU, among others. An
efficient distributed-memory (DM) multiple instruction, multiple data (MIMD) parallelisation
is required to engage the nodes of an HPC system. Within the nodes, different computing units
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Figure 1: Example of HPC system configuration.

feature different parallel paradigms. The CPU, so-called host, consists of a pool of cores packed
into NUMA nodes, that is, different CPU sockets, even groups of cores within sockets, with sep-
arate memory banks and controllers. The non-uniform memory access allows for faster access
to local memory at the expenses of slower access to remote memory. A fine-tuned, NUMA-
aware shared-memory (SM) MIMD parallelisation is required to engage all the CPU cores,
ensuring thread affinity and local memory access. On the other hand, massively-parallel pro-
cessors of different architectures such as MIC or GPU, also known as accelerators, integrate an
on-chip memory space separated from the host. Nowadays, GPU is the most common kind of
accelerator. To deal with such processors, the algorithms must be compatible with the stream
processing (SP) paradigm.

This section is devoted to the execution of the SpMV kernel, y <— A4x + y, on modern su-
percomputers. We describe a NUMA-aware, hierarchical parallel implementation based on a
multilevel workload distribution divided into three levels: 1) inter-node, 2) intra-node, and 3)
intra-unit.

2.2 Multilevel workload distribution

Let us consider a sparse matrix, 4 € R™*", representing the linear map f : U — V, where
U € R" and V € R™. The workload distribution is fulfilled with a multilevel decomposition, a
distribution technique very suitable for hierarchical parallel implementations [[14} 15, [7]. This
technique aims at distributing the computational load in two levels at least. Roughly, the first
level assigns the load per computing node and the second level the load per computing unit;
further levels may be required to target processors with complex NUMA configurations [[16]].
Figure [2|shows a row-major, multilevel decomposition of a generic sparse matrix and the vector
spaces it maps; this figure will be described throughout the rest of this section.

The first-level (inter-node) partitioning, represented in Figure 2|by a grey division, distributes
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Figure 2: Representation of a row-major, multilevel decomposition for SpMV. Vector elements and matrix rows are
divided into first-level chunks, denoted as p, and p;, for two cluster nodes, which are further divided into second-
level chunks, denoted as gy and g, for two computing units. Some of the second-level chunks are organized into
third-level intervals (those assigned to processors with NUMA configurations), denoted as g0, g1 and g2.

the initial workload among P computing nodes. Specifically, U and V are divided into P chunks
of elements and indexed contiguously. Likewise, 4 is divided into P chunks of rows, matching
the division of the output space, V.

The second-level (intra-node) partitioning, represented in Figure [2] by coloured divisions,
distributes the local workload among Q computing units. This partitioning must conform to the
actual performance of each unit for the sake of load balancing (e.g., using a partitioning tool
such as METIS [17]). This second-level partitions of vectors and matrices are stored in a set of
subvector and submatrix objects. Besides, because different computing units feature different
parallel paradigms, we introduce an abstract object called device, outlined in Listing [I] It de-
clares pure-virtual methods for both data management and kernel execution, and its derivatives
are specialised for different parallel implementations (e.g., OpenMP, OpenCL, CUDA). They
also can manipulate the submatrices for different sparse storage formats according to the prob-
lem requirements. Therefore, within a computing node, a set of devices is in charge of operating
on sets of second-level subvectors and submatrices.

Listing 1: Outline of the abstract object device, a base class for architecture-specific implementations. Each
computing unit is assigned a specialised instance of the devices object, depending on its architecture.

class device

{

public:
void allocate (subvectors, ...) = 0;
void allocate (submatrixs&, ...) = 0;
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void free (subvectors) = 0;
void free (submatrixég) 0;

void spmv (submatrix&, subvectoré&, subvector&) = 0;
}i

The third-level (intra-unit) partitioning, represented in Figure 2] by a dashed line, is rather an
arrangement of the second-level partition into G intervals, assigned to G NUMA groups. For a
given group, g, a pair of integers, offset and size, define the interval g. In contrast with the first-
and second-level decomposition in which data is explicitly distributed, this implicit third-level
arrangement exploits NUMA configurations at its best. Using thread affinity, threads are bound
to NUMA groups. The data is initialised through a predictive first-touch so that each third-level
interval resides in the thread’s local memory bank, as in [J5].

In comparison with other common implementations which assign an MPI rank to each com-
puting unit [9} [10, [11} 6], this approach minimises the number of processes participating in
MPI exchanges, as well as the global size of the messages. It takes full advantage of the intra-
node topology and the shared-memory parallel processors and minimises inter-node communi-
cations. Moreover, this advantage will only strengthen as the memory hierarchies of modern su-
percomputers become more complex, increasing the number of accelerators and NUMA groups
per node.

2.3 Overlapping execution of SpMV

In this multilevel decomposition approach, partitions may be identified by the pair of integers
(p,q), that is, the first- and second-level ID. The elements in (p,q) partition become a set of
contiguous indices, the own set of (p,q). By the same token, non-own elements become the
outer set of (p,q).

Any non-zero entry, (4);;, represents a coupling between the ith element in V and the jth
element in U. In distributed parallel processing, there is no guarantee that the ith and jth ele-
ments of vector spaces V and U are located in the same memory space, and hence the parallel
SpMYV kernel induces data exchanges between processes. For instance, the fifth row in Fig-
ure 2} located in (po, qo), is coupled with an element of (po,q;) and an element of (p;,q;). The
communication stage affects the performance and limits the scalability of the operation, so nec-
essary in large-scale applications. Therefore, the DM MIMD parallelisation of the SpMV must
minimise the communication overhead.

The multithreaded overlapping execution scheme shown in Figure 3| aims at hiding the com-
munications under computations. In this regard, the own set is further organised into inner and
interface categories. The inner set consists of those elements of the own set which are coupled
with own elements only. Conversely, interface set consists of those elements coupled with an
element of the outer set. The outer elements of U required by the interface couplings are de-
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Figure 3: Overlapping execution diagram using a flat OpenMP parallel region. Dashed boxes denote non-blocking
calls (i.e., threads enqueue the job into the queue of a devices and continue without waiting). Definition of the
boxes: INN, kernel execution for the inner set; IFC, kernel execution for the interface set; DTH, device-to-host copy
of the interface; HTD, host-to-device copy of the halo; PACK, filling of the MPI send buffer with interface;
SWAP, intra-node halo exchanges between devices; PICK, gathering of the halo from MPI receive buffers; MPI-I,
launching of non-blocking send and receive calls; MPI-W, waiting at MPI barrier.

noted as halo. Given that the inner calculations are independent of the halo, this allows us to
perform computations for inner elements simultaneously with communications, needed for the
interface elements only. Thus, in a synchronous implementation, the execution time is:

tsyn = tipn + tupd + lifc-

Following the overlapping scheme, the execution time reduces to:
fovi = max<tinn7tupd) +tifc-

In our previous implementation [15, 7], we used nested OpenMP regions for distributing
roles between groups of threads. This approach was inefficient on NUMA configurations be-
cause it was not able to ensure locality due to the dynamic scheduling and the undefined thread
affinity within nested regions.

The new version of multithreaded execution shown in [3] avoids nested parallelism for com-
putations. Instead, a flat OpenMP region assigns threads a fixed role, either computing or
management. Computing threads are assigned a static third-level interval of the workload and
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Figure 4: Comparison of different parallel modes of the SpMV kernel on a single node of MareNostrum 4 super-
computer (left) for a workload of 17 million rows. Weak scaling of different execution modes of the SpMV kernel
on up to 200 nodes of MareNostrum 4 for a constant workload of 17 million cells per node (right).

perform the calculations on the hostside, that is, the CPU cores. These threads must be dis-
tributed evenly among NUMA groups and first-touch its chunk to ensure locality. Management
threads are in charge of operating the second-level partitions assigned to accelerators through
devices queues and participating in parallel processing of communications.

3 PERFORMANCE ANALYSIS

In this paper, the performance on multiprocessor nodes has been enhanced through a NUMA-
aware, hierarchical parallelisation. The benefits of the new version have been tested on MareNos-
trum 4 supercomputer at the Barcelona Supercomputing Center. Its nodes with two Intel Xeon
8160 CPUs (24 cores, 2.1 GHz, 6 DDR4-2666 memory channels, 128 GB/s memory bandwidth,
33MB L3 cache) are interconnected through the Intel Omni-Path network (12.5 GB/s).

The sparse matrix used in this study arises from the symmetry-preserving discretisation [18]]
of the Laplacian operator on unstructured hex-dominant meshes of 17 million cells. Therefore,
the majority of rows contain seven non-zero coefficients. The sparse matrix storage format
used in this analysis is the classic ELLPACK [19], although we expect the benefits of this
implementation approach are independent of the storage format.

The single-node results of the SpMV for different parallel execution approaches are shown
in [4] (right). The MPI-only approach, which leads to the most compact data placement, is not
different from the OpenMP mode with NUMA placement and thread binding to cores (de-
noted as approach=new). In this OpenMP mode threads are equally distributed among the two
CPU sockets. The previous version of implementation (approach=o0ld) with dynamic loop-
based parallelism performs notably worse and due to remote memory accesses. Indeed, the
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maximal performance achieved by new and old approaches is 24.15 and 12.53 GFLOPS, re-
spectively, which corresponds to 75% and 39% of the theoretically achievable performance.

The weak scaling results of the SpMV kernel on up to 200 nodes, or 9,600 cores, are shown in
(right). The new approach is used to compare both the overlap and the synchronous execution
modes. The plot shows the weak scaling in terms of relative performance compared to a single
node for the constant workload of 17 million mesh cells per node. The performance of the
overlap and synchronous modes drops to 96% and 67%, respectively, already at 384 cores due
to the presence of communications. However, the communication overheads remain nearly
constant until 9,600 cores.

The heterogeneous capabilities of this implementation approach, and further scalability re-
sults, have been shown in [/, [16] in application to algebra-based, CFD simulations.

4 CONCLUSIONS

In this work, a hierarchical parallel implementation approach of the SpMV on modern su-
percomputers has been described. The OpenMP parallelisation has been significantly improved
in comparison with the previous version. A NUMA-aware strategy with proper thread bind-
ing and predictive data initialisation has increased the performance on dual-CPU nodes of the
MareNostrum 4 supercomputer by a factor x 1.9 times compared with dynamic loop-based par-
allel versions. Besides, the parallel performance has been demonstrated on up to 9,600 cores.
The results show that our overlapping execution strategy can effectively hide most of the com-
munication overheads with adequate loads per node.

It should be noted that the execution pattern described for the SpMV kernel can be used for
any routine in numerical simulation codes that require a halo update and can be decomposed
into inner and interface parts.

In our future work, we plan to focus on further accelerating the communications. For in-
stance, we will study a NUMA-aware management of inter- and intra-node data exchanges.
Specifically, the placement of exchange buffers and the binding of management threads consid-
ering the topology of the computing node.
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