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Introducing Poisson equation

Arising in multiple situations such as Computational Fluid Dynamics (CFD),
heat transfer (HT) simulations or computational electromagnetics (CEM).

General variable coefficients Poisson equation
Let ρ(r, t), φ(r, t), ψ(r, t) ∈ R be scalar fields. Then,

∇ ·
(

1
ρ
∇φ
)

= ψ

Discretized Poisson equation with variable coefficients
Let M,G, φh and ψh be the discretized divergence, gradient, φ and ψ,
respectively; and R = diag(ρh). Then,

MR−1Gφh = ψh
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Poisson equation in CFD

Governing equations (µ ≡ ct.)

Navier-Stokes: ∂v
∂t

+ (v · ∇)v = ν∆v− 1
ρ
∇p

Incompressibility: ∇ · v = 0

Fractional Step Method (FSM)
1 Evaluate the auxiliar vector field r(vn) := −(v · ∇)v + ν∆v
2 Evaluate the predictor velocity vp := vn + ∆t

(
3
2 r(vn)− 1

2 r(vn−1)
)

3 Obtain the pressure field by solving a Poisson equation:

∇ ·
(

1
ρ
∇pn+1

)
= 1

∆t∇ · v
p

4 Obtain the new divergence-free velocity vn+1 = vp −∇pn+1
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Discretization of Poisson equation

Ωdvh

dt
= −C(vh)vh+NDvh−R−1ΩGph, with


Convective operator: C(vh)
Diffusive operator: D
Mesh volumes: Ω = diag(Vh)
R = diag(ρh), N = diag(νh)

Symmetry-preserving staggered discretization of Navier-Stokes equations

In absence of diffusion (D = 0), global kinetic energy Ek =
〈1

2 Rvh,vh

〉
Ω

is
conserved if:

dEk∇p

dt

(∗)= 0

(∗) Symmetry-preserving discrete gradient1 satisfies: G = −Ω−1Mt.
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1Roel W.C.P. Verstappen and Arthur E.P. Veldman. “Symmetry-preserving discretization of
turbulent flow”. In: Journal of Computational Physics 187.1 (2003), pp. 343–368. issn:
00219991. doi: 10.1016/S0021-9991(03)00126-8
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Constant vs Variable coefficients Poisson equation

Combining FSM with a symmetry-preserving discretization leads to:
ρ ≡ ct.⇒ Constant Poisson equation:

Lp = ρMvp, where L = MG

ρ 6≡ ct.⇒ Variable coefficients Poisson equation:

L̃p = Mvp, where L̃ := MR−1G

Indeed, defining Ω̃ := ΩR:

L̃ = −MΩ̃−1Mt
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Poisson solvers in modern HPC systems

Direct solvers
Numerical methods that directly compute the exact solution (up to machine
precision), such as LU or Cholesky factorization methods.

Iterative solvers
Numerical methods that iteratively approximate the exact solution. Further
divided into:

Stationary: Relaxation methods such as Jacobi or Gauss-Seidel methods.
Non-stationary: such as Krylov subspace methods, e.g. CG, GMRES,
BICGSTAB...
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Poisson solvers in modern HPC systems

Direct solvers
Numerical methods that directly compute the exact solution (up to machine
precision).

Pros: Case-independent performance and machine accuracy.
Cons: High memory requirements and very high complexity.

Iterative solvers
Numerical methods that iteratively approximate the exact solution.

Pros: Highly parallelizable and, in many cases, much faster (especially
considering well-conditioned large sparse systems).
Cons: Less robust, convergence highly affected by the system.
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Poisson solvers in modern HPC systems

Iterative solvers
Pros: Highly parallelizable and, in many cases, much faster (especially
considering well-conditioned large sparse systems).
Cons: Less robust, convergence highly affected by the system.

Conjugate Gradient method
Direct method converging to the solution after n steps (in exact
arithmetic), being n the number of unknowns.
Very low memory requirements.
Lower computational costs per iteration compared to other Krylov
subspace methods.
Intrinsically only applicable to symmetric positive-definite (SPD) matrices.
Convergence theorem:

‖ek‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

‖e0‖A, where κ(A) = λmax(A)
λmin(A)
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Preconditioning techniques

Left, right and split preconditioning
Given the linear system Ax = b and the preconditioner M = M1M2, we can
consider the following preconditioning techniques:

Left preconditioning: M−1Ax = M−1b
Right preconditioning: AM−1y = b, where Mx = y
Split preconditioning: M−1

1 AM−1
2 y = M−1

1 b, where M2x = y
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Preconditioning techniques

Left, right and split preconditioning
Given the linear system Ax = b and the preconditioner M = M1M2, we can
consider the following preconditioning techniques:

Left preconditioning: M−1Ax = M−1b
Right preconditioning: AM−1y = b, where Mx = y
Split preconditioning: M−1

1 AM−1
2 y = M−1

1 b, where M2x = y

Thus, applying a preconditioner:
reduces to operations of the type y = M−1x.
is intended to improve the convergence of iterative solvers by modifying
the spectrum of the system: κ(M−1A) < κ(A). Indeed,

M−1 ' A−1 ⇒ κ(M−1A) ' κ(I) = 1.

needs to seek a balance between building/application costs and reduction
in the number of iterations.
if the solver being used requires the system to satisfy a certain condition,
then the preconditioned system needs to satisfy it, too.
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Variable Poisson equation with extreme contrasts in the coefficients

Recalling variable coefficients Poisson equation:

L̃p = Mvp,

where:

L̃ := MR−1G

G=−Ω−1Mt

= −MR−1Ω−1Mt Ω̃:=ΩR= −MΩ̃−1Mt.

Hence:

High contrasts in Ω or R⇒ High contrasts in Ω̃⇒ High contrasts in L̃
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Multiphase flow testcase for ratio ∈
{
1, 102, 104, 106}

Idealized parameters
Dynamic viscosity: µ = 10−4 Ns/m2

Surface tension: σ = ρ1/1000 N/m

Density:
{
ρ0 = 1.0, internal fluid
ρ1 = ratio−1, external fluid

(
kg/m3)

Initial ellipse axis: (a, b) = (1.0m, 0.5m)
Homogeneous mesh ⇒ Ω = (∆x∆y∆z) I and Ω̃ = (∆x∆y∆z) R

Figure: Initial “bubble” configuration. Figure: Evolved “bubble”.
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Spectrum of L̃ = −MΩ̃−1Mt for various ratios
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Figure: Normalized spectrum of L̃ for various density ratios on a 16× 16 mesh.
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Variable Poisson equation with extreme contrasts in the coefficients

Variable high contrasts in Ω or R⇒ L̃ is:


very ill-conditioned
variable
possibly not built explicitly

⇒ Preconditioning becomes crucial to use iterative methods.

Indeed:

L̃ is:

 very ill-conditioned

⇒ M−1 ' L̃−1 is required

variable

⇒ M is variable

possibly not built explicitly

⇒ M shouldn’t require full L̃

Arising not only in multiphase flows but also in many other situations such as:
oil reservoir simulations, electromagnetics modeling or under AMR with high
mesh aspect ratios, among others.
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The preconditioner itself
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Introducing Jacobi preconditioner

Jacobi preconditioner
Given the linear system L̃x = b, Jacobi preconditioner is defined as:

MJac = diag(L̃).
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Introducing Jacobi preconditioner

Jacobi preconditioner
Given the linear system L̃x = b, Jacobi preconditioner is defined as:

MJac = diag(L̃).

Pros:
If L̃ is available, cheap to build.
Easily invertible and highly parallelizable.
Can be used with CG, given that by definition MDiag is SPD.
Extremely easy to implement.

Well-suited for high-ratio Poisson equation.

Cons:
Requires full matrix L̃.
In many cases, doesn’t really improve convergence.
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Spectrum of M−1L̃ for various preconditioners and ratios
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Figure: Normalized spectrum of M−1L̃ for M ∈ {I, MJac}.
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Our proposal as a feasible alternative to the Jacobi preconditioner

Our proposal: an adaptive diagonal preconditioner
Given the linear system L̃x = b, our adaptive diagonal preconditioner is defined
as:

MDiag = Ω̃−1.
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Our proposal as a feasible alternative to the Jacobi preconditioner

Our proposal: an adaptive diagonal preconditioner
Given the linear system L̃x = b, our adaptive diagonal preconditioner is defined
as:

MDiag = Ω̃−1.

Pros:
Does not require L̃ (only R and Ω).
“Free” to build, as is based on available fields R and Ω.
Easily invertible and highly parallelizable.
Can be used with CG, given that by definition MDiag is SPD.
Extremely easy to implement.

Cons:
Compared to MJac, it requires one extra diagonal matrix product (if Ω and
R are both considered).
For lower contrasts in the coefficients, it doesn’t improve much the
convergence.
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Spectrum of M−1L̃ for various preconditioners and ratios
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Spectrum of M−1L̃ for various preconditioners and ratios
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Our proposal in combination with constant preconditioners

Combination of constant and adaptive diagonal preconditioners
Given the linear system L̃x = b, and a constant preconditioner ML = LLL

t
L

based on L = MG, our adaptive diagonal preconditioner can be applied to L̃ as:

M̃Diag = LLMDiagL
t
L.
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Our proposal in combination with constant preconditioners

Combination of constant and adaptive diagonal preconditioners
Given the linear system L̃x = b, and a constant preconditioner ML = LLL

t
L

based on L = MG, our adaptive diagonal preconditioner can be applied to L̃ as:

M̃Diag = LLMDiagL
t
L.

Pros:
Does not require L̃ (only L, R and Ω).
Compatible with more complex preconditioners, as they only need to be
calculated once.
Achieves further improvements in convergence compared to MJac and MDiag
thanks to the constant preconditioner ML.

Cons:
Compared to ML, it requires two extra diagonal matrix products (if Ω and
R are both considered).
It will always work worse than ML̃, a variable (and unaffordable) version of
ML based on L̃.
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Spectrum of M−1L̃ for various preconditioners and ratios
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Figure: Normalized spectrum of M−1L̃ for M ∈
{
I, MJac, MDiag, M̃Diag, ML̃
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Spectrum of M−1L̃ for various preconditioners and ratios
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Spectrum of M−1L̃ for various preconditioners and ratios
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Numerical results
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Numerical results

tol = 1.0e−6
ratio I MDiag MJac M̃Diag ML̃

1 93 93 91 28 28
102 310 83 80 33 23
104 2828 86 86 32 22
106 30286 154 152 74 64

tol = 1.0e−8
ratio I MDiag MJac M̃Diag ML̃

1 285 285 282 100 100
102 625 313 310 119 93
104 4024 323 318 142 98
106 37711 358 351 157 108

Table: Number of iterations required by PCG to solve the variable coefficients Poisson
equation arising from the testcase for various preconditioners, ratios and convergence
criteria. All tests are performed on a 64× 64 mesh and convergence is achieved when
the relative residual is smaller than the tolerance: |b− L̃xk|/|b− L̃x0| < tol.
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Concluding remarks
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Conclusions

MDiag has been proposed as a computationally cheaper alternative to
the Jacobi preconditioner, not requiring L̃ to be built, being extremely
easy to implement and leading to comparable reductions in the number of
iterations.

M̃Diag has been proposed as a computationally affordable variable
version of more complex fixed preconditioners (based on L rather than
L̃), not requiring L̃ to be built and leading to comparable reductions in the
number of iterations (with respect to its analogue based on L̃).

Especially for higher ratios of the coefficients, very important
reductions in the number of iterations have been shown for all the
preconditioners considered.

Numerical experiments confirm that the preconditioners we propose
achieve similar rates of convergence while being better suit for
variable (in time) problems.
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Future lines of work

Implementation of MDiag and M̃Diag to real simulation codes to quantify
the reduction in the execution time of the simulations based on
variable Poisson equation with high (and not necessarily extreme)
contrasts in the coefficients.

Study the impact of face-to-cell interpolators in MDiag and M̃Diag.

Study other possible combinations of MDiag with more complex fixed
preconditioners (based on L rather than L̃).

Study ways to combine MDiag with deflation techniques applied to the
variable matrix L̃. Thus, finding efficient and highly parallelizable ways to
compute updated deflation vectors, similarly to what was proposed by van
der Linden et al.2
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2J.H. van der Linden et al. “The parallel subdomain-levelset deflation method in reservoir
simulation”. In: Journal of Computational Physics 304 (Jan. 2016), pp. 340–358. issn: 00219991.
doi: 10.1016/j.jcp.2015.10.016
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Thanks for your attention!
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