

Subgrid-scale model based on the invariants of the gradient model tensor

D. Folch¹, F.X. Trias¹, A. Gorobets², A. Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Keldysh Institute of Applied Mathematics of RAS, Russia

11-15 January 2021

Paris, France

Introduction	S3PQR	Pseudo-spectral algorithm	
00000			

Contents

Introduction

- Eddy viscosity models. S3PQR
- 3 Pseudospectral algorithm overview. Cases
- Current development of the boundary layer algorithm

Introduction	S3PQR	Pseudo-spectral algorithm	
0000			

Overall perspective

- Direct Numerical Simulation: too many relevant scales of motion for practical cases
- Large eddy simulation. Models (Smagorinsky, Vreman, WALE...)
- Testing on benchmark cases (HIT, channel flow, boundary layer, driven cavity, sink flow...)

Our goal: combination of a pseudo-spectral method with the S3PQR algorithm. Testing on homogeneous isotropic turbulence (done), channel flow (done) and free boundary layer flow (work in progress)

Introduction S3I	PQR I	Pseudo-spectral algorithm	
00000 00	00	00000	0000000

Eddy viscosity - residual stress tensor

Incompressible Navier-Stokes equations:

$$\partial_t \overline{\boldsymbol{u}} + C(\overline{\boldsymbol{u}}, \overline{\boldsymbol{u}}) = D(\overline{\boldsymbol{u}}) - \nabla p - \nabla \tau(\overline{\boldsymbol{u}});$$

 $\nabla \cdot \overline{\boldsymbol{u}} = 0$

• Eddy-viscosity closure model $\tau(\overline{\boldsymbol{u}}) \approx -2\nu_{\boldsymbol{e}}S(\overline{\boldsymbol{u}})$ where $S(\overline{\boldsymbol{u}}) = 1/2(\nabla \overline{\boldsymbol{u}} + \nabla \overline{\boldsymbol{u}}^{T})$ is the rate-of-strain tensor.

• $\nu_e = (C_m \Delta)^2 D_m(\overline{u})$ where C_m is the model constant, Δ is the subgrid characteristic length, and $D_m(\overline{u})$ is the differential operator with units of frequency associated with the model

Introduction S3P	PQR I	Pseudo-spectral algorithm	
00000 000	0	00000	0000000

Invariants of the gradient tensor

From the several invariants of the gradient tensor $\mathbf{G} = \nabla \overline{\boldsymbol{u}}$, we restrict ourselves on

$$\{Q_{\rm G}, R_{\rm G}, Q_{\rm S}, R_{\rm S}, V_{\rm G}^2\}$$

where, given a second-order tensor A, we define

$$Q_A = (1/2)(tr^2(A) - tr(A^2))$$
$$R_A = det(A)$$
$$V_G^2 = 4(tr(S^2\Omega^2) - 2Q_SQ_\Omega)$$
$$P_A = tr(A)$$

and $S = 1/2(G + G^T)$ and $\Omega = 1/2(G - G^T)$ are the symmetric and the skew-symmetric parts of the gradient tensor, respectively.

Invariants of the gradient tensor

Most of the LES known models are based upon a combination of these invariants and can be written explicitly depending on them

- Smagorinsky model $\nu_e^{Smag} = f(Q_S)$
- Verstappen's model $\nu_e^{Ve} = f(R_S, Q_S)$
- WALE model $\nu_e^W = f(Q_G, V, Q_S)$
- Vreman's model $\nu_e^{Vr} = f(V, Q_G, Q_\Omega, Q_S)$
- σ -model $\nu_e^{\sigma} = f(\mathsf{G}\mathsf{G}^T eigenvalues)$

00000 000000 000000		S3PQR	Pseudo-spectral algorithm	
	00000	● 00	00000	0000000

Invariants of the gradient tensor

- **S3PQR** models: involve three invariants of the symmetric tensor GG^{T} formally based on the lowest-order approximation of the subgrid stress tensor, $\tau(\overline{u}) = \frac{\Delta^{2}}{12}GG^{T} + \mathcal{O}(\Delta^{4})$
- These invariants are related with the original ones

$$P_{\mathsf{G}\mathsf{G}^{\mathsf{T}}} = tr(\mathsf{G}\mathsf{G}^{\mathsf{T}}) = 2(Q_{\Omega} - Q_{\mathsf{S}})$$
$$Q_{\mathsf{G}\mathsf{G}^{\mathsf{T}}} = 2(Q_{\Omega} - Q_{\mathsf{S}})^2 - Q_{\mathsf{G}}^2 + 4tr(\mathsf{S}^2\Omega^2)$$
$$R_{\mathsf{G}\mathsf{G}^{\mathsf{T}}} = det(\mathsf{G}\mathsf{G}^{\mathsf{T}}) = det(\mathsf{G})det(\mathsf{G}^{\mathsf{T}}) = R_{\mathsf{G}}^2$$

S3PQR	Pseudo-spectral algorithm	
000		

New models. S3PQR

We can construct new models of the form

$$\nu_e = (C_{s3pqr}\Delta)^2 P^p_{\mathsf{G}\mathsf{G}^{\mathsf{T}}} Q^q_{\mathsf{G}\mathsf{G}^{\mathsf{T}}} R^r_{\mathsf{G}\mathsf{G}^{\mathsf{T}}}$$

Restricting ourselves to solutions involving only two invariants of $\mathsf{GG}^{\mathcal{T}}$, three models are found

$$u_e^{S3PQ} = (C_{s3pq}\Delta)^2 P_{GG^T}^{-5/2} Q_{GG^T}^{3/2}$$

$$\nu_e^{S3PR} = (C_{s3pr}\Delta)^2 P_{GG^T}^{-1} R_{GG^T}^{1/2}$$

$$\nu_{e}^{S3QR} = (C_{s3qr}\Delta)^{2} Q_{GGT}^{-1} R_{GGT}^{5/6}$$

S3PQR oo●	

S3PQR properties

Model constants

- 1 $C_{s3pq} = C_{s3pr} = C_{s3qr} = \sqrt{3}C_{Vr} \approx 0.458$ Numerical stability and less or equal dissipation than Vreman's model
- **2** $C_{s3pq} = 0.572$, $C_{s3pr} = 0.709$, $C_{s3qr} = 0.762$ The averaged dissipation of the models is equal than that of the Smagorinsky model. Simulations of decaying isotropic turbulence have shown that these values provides the right SGS dissipation.

2D Behaviour

 Only R_{GG}^T-dependent models switch off for 2D flows so S3PR and S3QR models are preferable

Other

 Positiveness, locality, Galilean invariance, proper near-wall behaviour

	S3PQR	Pseudo-spectral algorithm	
00000	000	00000	0000000

Generalities of the pseudo-spectral algorithm

- Pseudo-spectral method
- 3/2 rule de-aliasing technique
- Structured non-staggered grids
- Strong formulation. Poisson equation
- Fully-explicit second-order time-integration method
- MPI parallelization

S3PQR	Pseudo-spectral algorithm	
	0000	

Successfully solved cases

Homogeneous isotropic turbulence. Decaying and forced cases

Channel flow

S3PQR 000	Pseudo-spectral algorithm 00●00	

Test cases

Decaying isotropic turbulence with $C_{s3pq} = C_{s3pr} = C_{s3qr} = \sqrt{3}C_{Vr}$

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment.

S3PQR 000	Pseudo-spectral algorithm 000●0	

Test cases

Decaying isotropic turbulence with $C_{s3pq} = 0.572$, $C_{s3pr} = 0.709$, $C_{s3qr} = 0.762$

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment.

S3PQR 000	Pseudo-spectral algorithm 0000●	

Test cases

Turbulent channel flow

 $Re_{ au} = 395$ DNS Moser et al. LES 32^3

mean velocity

rms fluctuations

	S3PQR	Pseudo-spectral algorithm	Free boundary layer
00000	000	00000	●0000000

Free boundary layer algorithm: current status

- 1 Currently developing and testing the algorithm
- Pseudo-spectral methods demand periodic conditions: we follow Spalart's 1987¹,1988², that includes normal coordinate similarity transformations, growing terms and several other assumptions
- 3 Pseudo-spectral methods yield the maximum resolution when working with derivatives

¹Spalart P.R., Leonard A. (1987) Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers. https://doi.org/10.1007/978-3-642-71435-1_20 ²Spalart, P. (1988). Direct simulation of a turbulent boundary layer up to $R_{\theta} = 1410.$ doi:10.1017/S0022112088000345

	S3PQR	Pseudo-spectral algorithm	Free boundary layer
00000	000	00000	0000000

Free boundary layer algorithm: current status

4 One of the issues of the boundary layer simulations is the semi infinite domain and the scaling procedure (sc).
 From y∈[0,∞) to y∈[-1,1]

Which is the performance of S3PQR algorithm under such conditions?

S3PQR 000	Free boundary layer

Free boundary layer: equation

$$\partial_t \overline{\boldsymbol{u}} + C_{sc}(\overline{\boldsymbol{u}}, \overline{\boldsymbol{u}}) + \boldsymbol{GT}(\overline{\boldsymbol{u}}, \overline{\boldsymbol{U}}) = D_{sc}\overline{\boldsymbol{u}} - \nabla_{sc}p - \nabla_{sc}\tau(\overline{\boldsymbol{u}});$$
$$\nabla_{sc} \cdot \overline{\boldsymbol{u}} = 0$$

The most significant of these "growth terms" GT(u, U) is the mean term, (UU_X + VU_η), in the x-momentum equation. This term supplies momentum to the boundary layer and allows it to maintain a statistically steady state, in spite of the momentum loss due to the shear stress at the wall³

For simplicity, at this current approach we only consider \overline{UU}_X

³Spalart P.R., Leonard A. (1987) Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers. https://doi.org/10.1007/978-3-642-71435-1_20

Free boundary layer: algorithm

- Direct adaptation of channel flow method
- Strong formulation. Poisson pressure correction term. Chebyshev polynomials. Algebraic scaling.
- Explicit second order Adams Bashforth scheme
- Boundary conditions

$$y = 0 \rightarrow u, v, w = 0$$

$$y = \infty \rightarrow \langle u \rangle = 1; v, w = 0$$

Zero mean pressure gradient

	S3PQR	Pseudo-spectral algorithm	Free boundary layer
00000	000	00000	0000000

Boundary layer: scaling details

1 Algebraic scaling

$$y_{\infty} = L rac{1+y_1}{1-y_1}$$
 smooth $[0,\infty)$
 $sc \equiv rac{dy_1}{dy_{\infty}}$ smooth $[2/L,0]$

2 Convective term

$$u\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y_1} + w \frac{\partial u}{\partial z}$$

3 Diffusive term

$$\nu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y_1}\left(\frac{\partial u}{\partial y_1}\right) + \frac{\partial^2 u}{\partial z^2}\right)$$

Boundary layer: scaling details

4 Poisson equation

$$\frac{\partial^2 P}{\partial x^2} + sc \frac{\partial}{\partial y_1} (sc \frac{\partial P}{\partial y_1}) + \frac{\partial^2 P}{\partial z^2} = \frac{\partial u}{\partial x} + sc \frac{\partial v}{\partial y_1} + \frac{\partial w}{\partial z}$$

5 S3PQR model

$$\frac{\partial}{\partial x} (\nu_e[\mathbf{x}] \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y_1} (\nu_e[\mathbf{x}] \frac{\partial u}{\partial y_1}) + \frac{\partial}{\partial z} (\nu_e[\mathbf{x}] \frac{\partial u}{\partial z})$$

Scaling factor enters into the ν_e calculation via the Δ subgrid characteristic length and the invariants

S3PQR	Pseudo-spectral algorithm	Free boundary layer
		00000000

Thank you for your attention. Any questions?

S3PQR 000	Free boundary layer 0000000●

Further reading

- F. X. Trias, D. Folch, A. Gorobets, and A. Oliva. Building proper invariants for eddy-viscosity subgrid-scale models. Physics of Fluids, 27(6):065103, 2015.
- R. A. Clark, J. H. Ferziger, and W. C. Reynolds. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. Journal Fluid Mechanics, 91:1–16, 1979.
- F. X. Trias, D. Folch, A. Gorobets, and A. Oliva.
 Spectrally-consistent regularization of NavierStokes equations.
 Journal of Scientific Computing, 79:992–1014, 2019.