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Overall perspective

Direct Numerical Simulation: too many relevant scales of
motion for practical cases
Large eddy simulation. Models (Smagorinsky, Vreman,
WALE...)
Testing on benchmark cases (HIT, channel flow, boundary
layer, driven cavity, sink flow...)

Our goal: combination of a pseudo-spectral method with the
S3PQR algorithm. Testing on homogeneous isotropic turbulence
(done), channel flow (done) and free boundary layer flow (work in
progress)
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Eddy viscosity - residual stress tensor

Incompressible Navier-Stokes equations:

∂tu + C(u,u) = D(u)−∇p −∇τ(u);
∇ · u = 0

Eddy-viscosity closure model τ(u) ≈ −2νeS(u) where
S(u) = 1/2(∇u +∇uT ) is the rate-of-strain tensor.

νe = (Cm∆)2Dm(u) where Cm is the model constant, ∆ is the
subgrid characteristic length, and Dm(u) is the differential
operator with units of frequency associated with the model
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Invariants of the gradient tensor

From the several invariants of the gradient tensor G = ∇u, we
restrict ourselves on

{QG,RG,QS,RS,V 2
G}

where, given a second-order tensor A, we define

QA = (1/2)(tr2(A)− tr(A2))
RA = det(A)
V 2

G = 4(tr(S2Ω2)− 2QSQΩ)
PA = tr(A)

and S = 1/2(G + GT ) and Ω = 1/2(G−GT ) are the
symmetric and the skew-symmetric parts of the gradient
tensor, respectively.
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Invariants of the gradient tensor

Most of the LES known models are based upon a combination of
these invariants and can be written explicitly depending on them

Smagorinsky model νSmag
e = f (QS)

Verstappen’s model νVe
e = f (RS,QS)

WALE model νW
e = f (QG,V ,QS)

Vreman’s model νVr
e = f (V ,QG,QΩ,QS)

σ-model νσe = f (GGT eigenvalues)
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Invariants of the gradient tensor

S3PQR models: involve three invariants of the symmetric
tensor GGT formally based on the lowest-order approximation
of the subgrid stress tensor, τ(u) = ∆2

12 GGT +O(∆4)

These invariants are related with the original ones

PGGT = tr(GGT ) = 2(QΩ −QS)
QGGT = 2(QΩ −QS)2 −Q2

G + 4tr(S2Ω2)
RGGT = det(GGT ) = det(G)det(GT ) = R2

G
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New models. S3PQR

We can construct new models of the form

νe = (Cs3pqr ∆)2Pp
GGT Qq

GGT R r
GGT

Restricting ourselves to solutions involving only two invariants of
GGT , three models are found

νS3PQ
e = (Cs3pq∆)2P−5/2

GGT Q3/2
GGT

νS3PR
e = (Cs3pr ∆)2P−1

GGT R1/2
GGT

νS3QR
e = (Cs3qr ∆)2Q−1

GGT R5/6
GGT
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S3PQR properties
Model constants

1 Cs3pq = Cs3pr = Cs3qr =
√

3CVr ≈ 0.458 Numerical stability
and less or equal dissipation than Vreman’s model

2 Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762 The averaged
dissipation of the models is equal than that of the
Smagorinsky model. Simulations of decaying isotropic
turbulence have shown that these values provides the right
SGS dissipation.

2D Behaviour
Only RGGT -dependent models switch off for 2D flows so S3PR
and S3QR models are preferable

Other
Positiveness, locality, Galilean invariance, proper near-wall
behaviour
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Generalities of the pseudo-spectral algorithm

Pseudo-spectral method
3/2 rule de-aliasing technique
Structured non-staggered grids
Strong formulation. Poisson equation
Fully-explicit second-order time-integration method
MPI parallelization
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Successfully solved cases

Homogeneous isotropic turbulence. Decaying
and forced cases

Channel flow
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Test cases
Decaying isotropic turbulence with Cs3pq = Cs3pr = Cs3qr =

√
3CVr

Comparison with classical Comte-Bellot & Corrsin (CBC)
experiment.
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Test cases
Decaying isotropic turbulence with Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762

Comparison with classical Comte-Bellot & Corrsin (CBC)
experiment.
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Test cases
Turbulent channel flow

Reτ = 395 DNS Moser et al. LES 323
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Free boundary layer algorithm: current status

1 Currently developing and testing the algorithm

2 Pseudo-spectral methods demand periodic conditions: we
follow Spalart’s 19871,19882, that includes normal coordinate
similarity transformations, growing terms and several other
assumptions

3 Pseudo-spectral methods yield the maximum resolution when
working with derivatives

1Spalart P.R., Leonard A. (1987) Direct Numerical Simulation of Equilibrium
Turbulent Boundary Layers. https://doi.org/10.1007/978-3-642-71435-1 20

2Spalart, P. (1988). Direct simulation of a turbulent boundary layer up to
Rθ = 1410. doi:10.1017/S0022112088000345
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Free boundary layer algorithm: current status

4 One of the issues of the boundary layer simulations is the semi
infinite domain and the scaling procedure (sc).
From yε[0,∞) to yε[−1, 1]

Which is the performance of S3PQR algorithm
under such conditions?
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Free boundary layer: equation

∂tu + Csc(u,u) + GT (u,U) = Dscu −∇scp −∇scτ(u);
∇sc · u = 0

The most significant of these ”growth terms” GT (u,U) is the
mean term, (UUX + V Uη), in the x-momentum equation.This
term supplies momentum to the boundary layer and allows it
to maintain a statistically steady state, in spite of the
momentum loss due to the shear stress at the wall3

For simplicity, at this current approach we only consider UUX

3Spalart P.R., Leonard A. (1987) Direct Numerical Simulation of Equilibrium
Turbulent Boundary Layers. https://doi.org/10.1007/978-3-642-71435-1 20
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Free boundary layer: algorithm

Direct adaptation of channel flow method
Strong formulation. Poisson - pressure correction term.
Chebyshev polynomials. Algebraic scaling.
Explicit second order Adams - Bashforth scheme
Boundary conditions

y = 0→ u, v ,w = 0

y =∞→< u >= 1; v ,w = 0

Zero mean pressure gradient
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Boundary layer: scaling details

1 Algebraic scaling

y∞ = L1 + y1
1− y1

smooth [0,∞)

sc ≡ dy1
dy∞

smooth [2/L,0]

2 Convective term

u∂u
∂x + vsc ∂u

∂y1
+ w ∂u

∂z

3 Diffusive term

ν(∂
2u
∂x2 + sc ∂

∂y1
(sc ∂u

∂y1
) + ∂2u

∂z2 )

19 / 22



Introduction S3PQR Pseudo-spectral algorithm Free boundary layer

Boundary layer: scaling details

4 Poisson equation

∂2P
∂x2 + sc ∂

∂y1
(sc ∂P

∂y1
) + ∂2P

∂z2 = ∂u
∂x + sc ∂v

∂y1
+ ∂w
∂z

5 S3PQR model

∂

∂x (νe[x]∂u
∂x ) + sc ∂

∂y1
(νe[x]sc ∂u

∂y1
) + ∂

∂z (νe[x]∂u
∂z )

Scaling factor enters into the νe calculation via the ∆ subgrid
characteristic length and the invariants
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Thank you for your attention.
Any questions?
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Further reading

F. X. Trias, D. Folch, A. Gorobets, and A. Oliva. Building
proper invariants for eddy-viscosity subgrid-scale models.
Physics of Fluids, 27(6):065103, 2015.
R. A. Clark, J. H. Ferziger, and W. C. Reynolds. Evaluation of
subgrid-scale models using an accurately simulated turbulent
flow. Journal Fluid Mechanics, 91:1–16, 1979.
F. X. Trias, D. Folch, A. Gorobets, and A. Oliva.
Spectrally-consistent regularization of NavierStokes equations.
Journal of Scientific Computing, 79:992–1014, 2019.
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