

On a proper tensorial subgrid heat flux model

<u>F.Xavier Trias</u>¹, Firas Dabbagh², Daniel Santos¹, Andrey Gorobets³, Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Christian-Doppler Laboratory for Multi-scale Modelling of Multiphase Processes, Johannes Kepler University, Linz, Austria ³Keldysh Institute of Applied Mathematics of RAS, Russia

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
000		00000	00000000	00
Contents	:			

- 2 Modeling the subgrid heat flux
- 3 Building proper models

Motivation ●00	Modeling the subgrid heat flux	Building proper models	Results 00000000	Conclusions 00
Motivati	on			

Research question:

• Can we find a nonlinear SGS heat flux model with **good physical** and **numerical properties**, such that we can obtain satisfactory predictions for a turbulent Rayleigh-Bénard convection?

DNS of an air-filled Rayleigh-Bénard convection at $Ra = 10^{10}$

¹F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *On the evolution of flow topology in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 28:115105, 2016.

Motivation 0●0	Modeling the subgrid heat flux	Building proper models	Results 000000000	Conclusions 00
Motivat	ion			

Air-filled RB:
$$Pr = 0.7$$

$$Ra = 10^{8}$$

²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

Motivation ○●○	Modeling the subgrid heat flux	Building proper models	Results 00000000	Conclusions 00
Motivati	on			

Air-filled RB:
$$Pr = 0.7$$

 $Ra = 10^8$ $Ra = 10^{10}$

²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

Motivation 0●0	Modeling the subgrid heat flu	ux Building proper models 00000	Results 00000000	Conclusions 00
Motivati	on			
	Air-filled RB:	<i>Pr</i> = 0.7	ډ	PRACE
Ra =	10 ⁸	$Ra = 10^{10}$	$Ra = 10^{11}$	***

²F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

Motivation 00●	Modeling the subgrid heat flux	Building proper models	Results 000000000	Conclusions
Motivati	on			

DNS: $208\times208\times400$

$$Ra = 10^8$$
 $Ra = 10^{10}$ $Ra = 10^{11}$

Motivation 00●	Modeling the subgrid heat flux	Building proper models	Results 000000000	Conclusions 00
Motivati	on			

DNS: $208\times208\times400$

LES: $80 \times 80 \times 120$

$$Ra = 10^8 \qquad Ra = 10^{10} \qquad Ra = 10^{11}$$

Motivation 000	Modeling the subgrid heat flux ●0000000	Building proper models	Results 000000000	Conclusions
How t	o model the subgrid	heat flux in LE	S?	
	$\partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} = \nu \nabla^2 \overline{u} -$	$ abla \overline{p} = -\nabla \cdot \tau(\overline{u})$; $\nabla \cdot \overline{u} = 0$	I
	$\nu_t \approx 1$	$\frac{(C_m\delta)^2 D_m(\overline{u})}{(C_m\delta)^2 D_m(\overline{u})}$		

Motivation 000	Modeling the subgrid heat flux •0000000	Building proper models	Results 000000000	Conclusions 00
How to	model the subgrid	heat flux in LE	ES?	
2	$\overline{\mathbf{x}} + (\overline{\mathbf{x}}, \nabla)\overline{\mathbf{x}} + \nabla^2\overline{\mathbf{x}}$	$\nabla \overline{z} + \overline{f} - \nabla - (\overline{z})$		0
0	$u^{t}u + (u \cdot v)u = v v u - u$	$-\nabla p + \mathbf{r} - \nabla \cdot \tau(\mathbf{u})$; $\nabla \cdot u = 0$	J
	eddy-viscosity \longrightarrow	$\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$		
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
ô	$\overline{T}_t \overline{T} + (\overline{u} \cdot \nabla)\overline{T} = \alpha \nabla^2 \overline{T}_t$	$\overline{} - abla \cdot oldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{uT}$	F
	eddy-diffusivity \longrightarrow	$\boldsymbol{q} \approx -\alpha_t \nabla \overline{T}$		

6/29

Motivation 000	Modeling the subgrid heat flux ●0000000	Building proper models	Results 000000000	Conclusions 00
How to	model the subgrid	heat flux in LE	ES?	
ô	$\nabla_t \overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nu \nabla^2 \overline{u} -$ eddy-viscosity \longrightarrow		; $\nabla \cdot \overline{u} = 0$	C
	$ u_t pprox$	$(C_m\delta)^2 D_m(\overline{u})$		
ĉ	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T}$	$\overline{\mathbf{r}} - abla \cdot \mathbf{q}$ where	$\mathbf{q} = \overline{uT} - \overline{uT}$	F

eddy-diffusivity $\longrightarrow q \approx -\alpha_t \nabla \overline{T}$

$$\alpha_t = \frac{\nu_t}{Pr_t}$$

Motivation 000	Modeling the subgrid heat flux ●0000000	Building proper models	Results 00000000	Conclusions 00
How to	o model the subgrid	heat flux in LE	ES?	
	$\partial_{\tau}\overline{\mu} + (\overline{\mu}\cdot\nabla)\overline{\mu} = \nu\nabla^{2}\overline{\mu} -$	$\nabla \overline{p} + \overline{f} - \nabla \cdot \tau(\overline{u})$	$\nabla \cdot \overline{\mu} = 0$)
	$eddy-viscosity \longrightarrow$	$\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$, , , , , , , , , , , , , , , , , , , ,	-
	$\nu_t \approx$	$(C_m \delta)^2 D_m(\overline{u})$		
	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T}$	$- abla \cdot oldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{uT}$	=

eddy-diffusivity $\longrightarrow q \approx -\alpha_t \nabla \overline{T}$

$$\alpha_t = \frac{\nu_t}{Pr_t}$$

 Pr_t ?

How to model the subgrid heat flux in LES?

Motivation 000	Modeling the subgrid heat flux 00●00000	Building proper models	Results 000000000	Conclusions
How to	model the subgrid	heat flux in LE	:S?	
2	$\overline{a} + (\overline{a}, \nabla) \overline{a} = -\nabla^2 \overline{a}$	$\nabla \overline{z} + \overline{f} - \nabla - (\overline{z})$	$\nabla = 0$	<u> </u>
O_t	$u + (u \cdot \nabla)u = \nu \nabla^{-}u -$	$\nabla p + \mathbf{r} - \nabla \cdot \tau(\mathbf{u})$; $\nabla \cdot u = 0$)
	eddy-viscosity \longrightarrow	$\tau (\overline{u}) = -2\nu_t S(\overline{u})$		
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
∂_t	$\overline{T} + (\overline{u} \cdot \nabla)\overline{T} = \alpha \nabla^2 \overline{T}$	$- abla \cdot oldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{u}\overline{T}$	=
	eddy-diffusivity \longrightarrow	$\boldsymbol{q} \approx -\alpha_t \nabla \overline{T}$		

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000000	Conclusion: 00
How t	to model the subgrid	heat flux in L	ES?	
	· · · · · · · · · · · · · · · · · · ·	()		
	$\partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} = \nu \nabla^2 \overline{u} -$	$\nabla \overline{p} + t - \nabla \cdot \tau(\overline{u})$; $\nabla \cdot \overline{u} = 0$	
	eddy-viscosity \longrightarrow	$\tau (\overline{u}) = -2\nu_t S(\overline{u})$		
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T}$	$- abla \cdot \boldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{u}\overline{T}$	
	eddy-diffusivity \longrightarrow	$\boldsymbol{q}\approx-\alpha_t\nabla\overline{T}$	$(\equiv q^{eddy})$	
	gradient model \longrightarrow	$\boldsymbol{q} \approx -rac{\delta^2}{12} G \nabla \overline{T}$	$(\equiv q^{nl})$	

Motivation 000	Modeling the subgrid heat flux 000●0000	Building proper models	Results 000000000	Conclusions 00
How to	model the subgrid	heat flux in LES	S?	
ð	$_{t}\overline{u}+(\overline{u}\cdot\nabla)\overline{u}=\nu\nabla^{2}\overline{u}-$	$\nabla \overline{p} + \overline{f} - \nabla \cdot \tau(\overline{u})$; $\nabla \cdot \overline{u} = 0$	
	eddy-viscosity \longrightarrow	$\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$		
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
∂	$\overline{T}_{t} \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^{2} \overline{T}$	$- abla \cdot \boldsymbol{q}$ where \boldsymbol{q}	$q = \overline{uT} - \overline{uT}$	
	eddy-diffusivity \longrightarrow	$\boldsymbol{q}\approx-\alpha_t\nabla\overline{T}$	$(\equiv q^{eddy})$	
	gradient model \longrightarrow	$m{q} pprox -rac{\delta^2}{12} G abla \overline{T}$	$(\equiv q^{nl})$	
	$G \equiv \nabla \overline{u}$	$m{q} = -rac{\delta^2}{12}G abla \overline{T} + C$	$\mathcal{O}(\delta^4)$	

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 000000000	Conclusions 00
A priori	alignment trends ³			
	eddy-diffusivity \longrightarrow	$q \approx - \frac{\alpha_t}{s^2} \nabla \overline{T}$	$(\equiv q^{eddy})$	

gradient model $\longrightarrow q \approx -\frac{\delta^2}{12} G \nabla \overline{T} \qquad (\equiv q^{nl})$

³F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 000000000	Conclusions
A priori	alignment trends ³			
	eddy-diffusivity \longrightarrow	$\boldsymbol{q} \approx - \alpha_t \nabla \overline{T}$ δ^2	$(\equiv q^{eddy})$	

³F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features* in turbulent Rayleigh-Bénard convection, Physics of Fluids, 29:105103, 2017.

³F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Motivation 000	Modeling the subgrid heat flux 00000●00	Building proper models 00000	Results 00000000	Conclusion 00
How to	model the subgrid	heat flux in LE	ES?	
ĉ	$\overline{v}_t \overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nu \nabla^2 \overline{u} - $ eddy-viscosity $\longrightarrow \infty$	$\nabla \overline{p} + \overline{f} - \nabla \cdot \tau(\overline{u})$ $\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$; $\nabla \cdot \overline{u} = 0$	
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
ĉ	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T}$	$- abla \cdot oldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{u}\overline{T}$	
	eddy-diffusivity \longrightarrow	$q \approx -\alpha_t \nabla T$	$(\equiv q^{eddy})$	
	gradient model \longrightarrow	$\boldsymbol{q}\approx-\frac{\delta^2}{12}G\nabla\overline{T}$	$(\equiv q^{nl})$	

⁴S.Peng and L.Davidson. Int.J.Heat Mass Transfer, 45:1393-1405, 2002.

Motivation 000	Modeling the subgrid heat flux 00000●00	Building proper models	Results 00000000	Conclusion
How t	o model the subgrid	heat flux in L	ES?	
	$\partial \overline{u} + (\overline{u}, \nabla)\overline{u} + (\nabla^2 \overline{u})$	$\nabla \overline{z} + \overline{f} - \nabla \overline{z}$		
	$v_t u + (u \cdot v) u = v v u -$	$\nabla p + \mathbf{r} = \nabla \cdot \mathbf{r} (\mathbf{u})$), $\nabla \cdot u = 0$	
	eddy-viscosity \longrightarrow	$\tau (\overline{u}) = -2\nu_t S(\overline{u})$)	
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T}$	$-\nabla \cdot \boldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{u}\overline{T}$	
	eddy-diffusivity \longrightarrow	$q \approx -\alpha_t \nabla T$	$(\equiv q^{eddy})$	
	gradient model \longrightarrow	$\boldsymbol{q}\approx-\frac{\delta^2}{12}G\nabla\overline{T}$	$(\equiv q^{nl})$	
	Peng&Davidson ⁴ \longrightarrow	$m{q} pprox -rac{\delta^2}{12}S abla \overline{T}$	$(\equiv q^{PD})$	

⁴S.Peng and L.Davidson. Int.J.Heat Mass Transfer, 45:1393-1405, 2002.

Motivation 000	Modeling the subgrid heat flux	Building p 00000

Building proper models

Results 000000000 Conclusions

A priori alignment trends

Motivation 000	Modeling the subgrid heat flux ○○○○○○○●	Building proper models	Results 00000000	Conclusions 00
How	to model the subgrid	l heat flux in LE	S?	
	$\partial \overline{u} + (\overline{u}, \nabla)\overline{u} - u\nabla^2\overline{u}$	$\nabla \overline{z} + \overline{f} - \nabla - \overline{c}(\overline{z})$	\cdot ∇ \overline{u} – (
	$v_t u + (u \cdot v) u = v v \cdot u -$ eddy-viscosity \longrightarrow	$\tau (\overline{u}) = -2\nu_t S(\overline{u})$; $\nabla \cdot u = 0$	1
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

$$\begin{array}{rcl} \mbox{eddy-diffusivity} & \longrightarrow & q \approx & \alpha_t \nabla T & (\equiv q^{eddy}) \\ \mbox{gradient model} & \longrightarrow & q \approx & \delta^2 & G \nabla \overline{T} & (\equiv q^{nl}) \\ \mbox{Peng&Davidson} & \longrightarrow & q \approx & \delta^2 & S \nabla \overline{T} & (\equiv q^{PD}) \end{array}$$

Motivation 000	Modeling the subgrid heat flux 0000000●	Building proper models	Results 000000000	Conclusions
How t	to model the subgrid	heat flux in LE	S?	
	$\partial \overline{u} + (\overline{u}, \nabla)\overline{u} - v\nabla^2\overline{u}$	$\nabla \overline{z} + \overline{f} - \nabla - \overline{c}(\overline{z})$	\cdot ∇ $=$ 0	
	$\begin{array}{c} c_t u + (u \cdot \nabla) u = \nu \nabla \nabla u - \\ \text{eddy-viscosity} & \longrightarrow \end{array}$	$\nabla p + \mathbf{I} = \nabla \cdot \tau(\mathbf{u})$ $\tau(\mathbf{u}) = -2\nu_t S(\mathbf{u})$; $\nabla \cdot u = 0$	
	$\nu_t \approx$	$(C_m\delta)^2 D_m(\overline{u})$		
	$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T}$	$- abla \cdot oldsymbol{q}$ where	$\mathbf{q} = \overline{uT} - \overline{u}\overline{T}$:

mixed model
$$\longrightarrow q \approx q^{nl} + \sigma q^{eddy}$$
 $(\equiv q^{mix})$

⁵B.J.Daly and F.H.Harlow. **Physics of Fluids**, 13:2634, 1970.

Motivation 000	Modeling the subgrid heat flux 0000000●	Building proper models	Results 00000000	Conclusions 00
How t	o model the subgrid	heat flux in LE	ES?	
	$\partial_t \overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nu \nabla^2 \overline{u} -$ eddy-viscosity $\longrightarrow \mathcal{A}$	$ \nabla \overline{p} + \overline{f} - \nabla \cdot \tau(\overline{u}) $ $ \tau \ (\overline{u}) = -2\nu_t S(\overline{u}) $; $\nabla \cdot \overline{u} = 0$)
	$\nu_t \approx$	$(C_m \delta)^2 D_m(\overline{u})$		

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

mixed model
$$\longrightarrow q \approx q^{nl} + \sigma q^{eddy} \quad (\equiv q^{mix})$$

Daly&Harlow⁵ $\longrightarrow q \approx -\mathcal{T}_{SGS} \frac{\delta^2}{12} GG^T \nabla \overline{T} \quad (\equiv q^{DH})$

⁵B.J.Daly and F.H.Harlow. **Physics of Fluids**, 13:2634, 1970.

Motivation 000	Modeling the subgrid heat flux 0000000●	Building proper models	Results 00000000	Conclusions
How t	o model the subgrid	heat flux in LE	S?	
	$\partial_t \overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nu \nabla^2 \overline{u} -$ eddy-viscosity \longrightarrow		; $\nabla \cdot \overline{u} = 0$)
	$\nu_t \approx$	$(C_m \delta)^2 D_m(\overline{u})$		

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

mixed model
$$\longrightarrow q \approx q^{nl} + \sigma q^{eddy}$$
 $(\equiv q^{mix})$
Daly&Harlow⁵ $\longrightarrow q \approx -\mathcal{T}_{SGS} \frac{\delta^2}{12} GG^T \nabla \overline{T}$ $(\equiv q^{DH})$
 $\mathcal{T}_{SGS} = 1/|S|$

⁵B.J.Daly and F.H.Harlow. **Physics of Fluids**, 13:2634, 1970.

Motivation 000	Modeling the subgrid heat	flux Building proper models •0000	Results 00000000	Conclusion 00
A priori	alignment tre	nds		
	$q^{nl} \equiv -rac{\delta^2}{12}G \nabla$	$\overline{q} \overline{T} \qquad q^{DH} \equiv -\overline{\mathcal{T}_{SGS}} \frac{\delta}{1}$	$\frac{2}{2}GG^{T}\nabla\overline{T}$	
2 1.5 1.5 1 1 1 1 0.5	STABLE MODELS UNSTA	BLE MODELS!!!	T Vbulk	T + AT

0

as it.

 180°

0

0°

qeddy

 30°

60° q_{nl}

90°

Angle respect to the eddy-diffusivity model, \boldsymbol{q}^{eddy}

 $120^{\rm o}$

 150^{o}

14 / 29

y x

Motivation 000	Modeling the subgrid heat flux	Building proper models ○●○○○	Results 00000000	Conclusions

What about near-wall scaling?

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000000	Conclusions

Near-wall scaling for DH model?

$$q^{DH} \equiv -\mathcal{T}_{SGS} rac{\delta^2}{12} G G^T \nabla \overline{T}$$
; $\mathcal{T}_{SGS} = 1/|S|$

 Motivation
 Modeling the subgrid heat flux
 Building proper models
 Results
 Conclusions

 000
 00000000
 000000000
 000000000
 000000000
 000000000

 Near-wall scaling for DH model?
 000000000
 000000000
 000000000
 000000000

 \longrightarrow Answer: it is $\mathcal{O}(y^1)$ instead of $\mathcal{O}(y^3)$

$$q^{DH} \equiv - \mathcal{T}_{SGS} rac{\delta^2}{12} G G^T
abla \overline{T} \; ; ~~ \mathcal{T}_{SGS} = 1/|S|$$

$$u = ay + O(y^2); v = by^2 + O(y^3); w = cy + O(y^2); T = dy + O(y^2)$$

$$G = \begin{pmatrix} y & 1 & y \\ y^2 & y & y^2 \\ y & 1 & y \end{pmatrix}; \ \nabla \overline{T} = \begin{pmatrix} y \\ 1 \\ y \end{pmatrix} \implies GG^T \nabla \overline{T} = \begin{pmatrix} y \\ y^2 \\ y \end{pmatrix} = \mathcal{O}(y^1)$$

$$\mathcal{T}_{SGS} = 1/|S| = \mathcal{O}(y^0)$$

 Modivation
 Modeling the subgrid heat flux
 Building proper models
 Results
 Conclusions

 000
 0000000
 00000000
 000000000
 000000000
 000000000

 Near-wall scaling for DH model?
 000000000
 000000000
 000000000
 000000000

 \implies Answer: it is $\mathcal{O}(y^1)$ instead of $\mathcal{O}(y^3)$

$$q^{DH} \equiv - \mathcal{T}_{SGS} rac{\delta^2}{12} G G^T
abla \overline{T} \; ; ~~ \mathcal{T}_{SGS} = 1/|S|$$

$$u = ay + O(y^2); \quad v = by^2 + O(y^3); \quad w = cy + O(y^2); \quad T = dy + O(y^2)$$

$$G = \begin{pmatrix} y & 1 & y \\ y^2 & y & y^2 \\ y & 1 & y \end{pmatrix}; \quad \nabla \overline{T} = \begin{pmatrix} y \\ 1 \\ y \end{pmatrix} \implies GG^T \nabla \overline{T} = \begin{pmatrix} y \\ y^2 \\ y \end{pmatrix} = \mathcal{O}(y^1)$$
$$\overline{\mathcal{T}_{SGS}} = 1/|S| = \mathcal{O}(y^0)$$

Idea: build a \mathcal{T}_{SGS} with the proper $\mathcal{O}(y^2)$ scaling!!!

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
000	00000000	000●0	00000000	00
			. 0	

Building proper models for the subgrid heat flux

Let us consider models that are based on the invariants of the tensor GG^{T}

$$\boldsymbol{q} \approx -C_{\boldsymbol{M}} \left(P^{\boldsymbol{p}}_{\boldsymbol{G}\boldsymbol{G}^{\mathsf{T}}} \boldsymbol{Q}^{\boldsymbol{q}}_{\boldsymbol{G}\boldsymbol{G}^{\mathsf{T}}} \boldsymbol{R}^{\boldsymbol{r}}_{\boldsymbol{G}\boldsymbol{G}^{\mathsf{T}}} \right) \frac{\delta^2}{12} \boldsymbol{G} \boldsymbol{G}^{\mathsf{T}} \nabla \overline{\boldsymbol{T}} \qquad (\equiv \boldsymbol{q}^{\boldsymbol{S}2})$$
Motivation 000	Modeling the subgrid heat flux		Building ∣ 000●0	Building proper models		Results 000000000	Conclusions
D							

Let us consider models that are based on the invariants of the tensor GG^{T}

$$\boldsymbol{q} \approx -C_{\boldsymbol{M}} \left(P^{\boldsymbol{p}}_{\boldsymbol{G}\boldsymbol{G}^{\mathsf{T}}} \boldsymbol{Q}^{\boldsymbol{q}}_{\boldsymbol{G}\boldsymbol{G}^{\mathsf{T}}} \boldsymbol{R}^{\boldsymbol{r}}_{\boldsymbol{G}\boldsymbol{G}^{\mathsf{T}}} \right) \frac{\delta^2}{12} \boldsymbol{G} \boldsymbol{G}^{\mathsf{T}} \nabla \overline{\boldsymbol{T}} \qquad (\equiv \boldsymbol{q}^{\boldsymbol{S}2})$$

-6r - 4q - 2p = 1 [T]; 6r + 2q = s,

where s is the slope for the asymptotic near-wall behavior, *i.e.* $\mathcal{O}(y^s)$.

Solutions: q(p,s) = -(1+s)/2 - p and r(p,s) = (2s+1)/6 + p/3

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000000	Conclusions 00

Solutions: q(p,s) = -(1+s)/2 - p and r(p,s) = (2s+1)/6 + p/3

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
000	00000000		00000000	00

Solutions: q(p,s) = -(1+s)/2 - p and r(p,s) = (2s+1)/6 + p/3

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
			●00000000	

A priori analysis in the bulk

Estimation of the model constant, C_{s2part}

Playing with exponent *p*...

$$q^{S2PQR} \approx -C_{s2pqr} \left(P^{p}_{GGT} \mathbf{Q}^{-(p+3/2)}_{GGT} R^{(2p+5)/6}_{GGT} \right) \frac{\delta^{2}}{12} GG^{T} \nabla \overline{T}$$

$$Ra = 10^8$$
 $Ra = 10^{10}$ $Ra = 10^{11}$

$$\frac{<|q^{S2PQR}|>_{bulk}}{<|q|>_{bulk}}=1\longrightarrow C_{s2pqr}$$

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results •00000000	Conclusions

A priori analysis in the bulk

Estimation of the model constant, C_{s2pgr}

Playing with exponent p...

$$q^{S2PQR} \approx -C_{s2pqr} \left(P^{p}_{GGT} \mathbf{Q}^{-(p+3/2)}_{GGT} R^{(2p+5)/6}_{GGT} \right) \frac{\delta^{2}}{12} GG^{T} \nabla \overline{T}$$

$$Ra = 10^8$$
 $Ra = 10^{10}$ $Ra = 10^{11}$

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
			00000000	

A priori analysis in the bulk

Estimation of the model constant, C_{s2par}

Playing with exponent *p*...

$$q^{S2PQR} \approx -C_{s2pqr} \left(P^{p}_{GGT} Q^{-(p+3/2)}_{GGT} R^{(2p+5)/6}_{GGT} \right) \frac{\delta^{2}}{12} GG^{T} \nabla \overline{T}$$

$$Ra = 10^8$$
 $Ra = 10^{10}$ $Ra = 10^{11}$

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 0●0000000	Conclusions
A priori Alignmen	analysis in the bu	lk		
Playing w	ith exponent <i>p</i>		$Ra = 10^8$ $Ra = 10^{10}$	$Ra = 10^{11}$
q ^{S2PQR} a	$\approx -C_{s2pqr} \left(P_{GG^{T}}^{p} Q_{GG^{T}}^{-(p+3/2)} R \right)$	$\left(\frac{\delta^{(2\rho+5)/6}}{GG^{T}}\right)\frac{\delta^2}{12}GG^T\nabla\overline{T}$		
2 13 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10				p=1.4

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 0●0000000	Conclusions 00
A priori Alignmen	analysis in the bu	lk		
Playing w	ith exponent <i>p</i>		$Ra = 10^8$ $Ra = 10$	10 $Ra = 10^{11}$
$q^{S2PQR} \approx$	$\approx -C_{s2pqr} \left(P_{GG^{T}}^{p} Q_{GG^{T}}^{-(p+3/2)} R \right)$	$\binom{(2p+5)/6}{GG^{T}} \frac{\delta^2}{12} G G^T \nabla \overline{T}$		
2 13 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10				
2 1.1 1.2 1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4				p=0.2

20 / 29

М				
	ЭC			

Modeling the subgrid heat flux 00000000 Building proper models

Results

Conclusions

A priori alignment trends of S2PR in the bulk

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 000●00000	Conclusions

$$q^{PD} \equiv -\frac{\delta^2}{12} S \nabla \overline{T}$$

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 000●00000	Conclusions

$$q^{PD} \equiv -\frac{\delta^2}{12} S \nabla \overline{T}$$

$$\cos \beta^{model} = \frac{q^{eddy} \cdot q^{model}}{|q^{eddy}||q^{model}|}$$

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 000●00000	Conclusions

$$q^{PD} \equiv -\frac{\delta^2}{12} S \nabla \overline{T}$$

$$\cos \beta^{PD} = \frac{\nabla \overline{T} \cdot S \nabla \overline{T}}{|\nabla \overline{T}| \cdot |S \nabla \overline{T}|} = \mathcal{O}(y^1)$$
$$\lim_{y \to 0^+} \frac{|q^{PD}|}{|q^{n/l}|} = \lim_{y \to 0^+} \frac{|S \nabla \overline{T}|}{|G \nabla \overline{T}|} = \frac{1}{2}$$

$$\cos\beta^{model} = \frac{q^{eddy} \cdot q^{model}}{|q^{eddy}||q^{model}|}$$

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 000●00000	Conclusions 00

$$q^{PD} \equiv -\frac{\delta^2}{12} S \nabla \overline{T}$$

$$q^{s2PR} \equiv -C_{s2pr} P_{GG^{T}}^{-3/2} R_{GG^{T}}^{1/3} \frac{\delta^{2}}{12} GG^{T} \nabla \overline{T}$$

$$\cos eta^{model} = rac{q^{eddy} \cdot q^{model}}{|q^{eddy}||q^{model}|}$$

$$\coseta^{model} = rac{q^{eddy} \cdot q^{model}}{|q^{eddy}||q^{model}|}$$

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
000		00000	0000●0000	00
A poster	<i>iori</i> results?			

$$\partial_{t}\overline{u} + (\overline{u} \cdot \nabla)\overline{u} = \nu \nabla^{2}\overline{u} - \nabla\overline{p} + \overline{f} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

eddy-viscosity $\longrightarrow \tau (\overline{u}) = -2\nu_{t}S(\overline{u})$

$$\nu_t \approx (C_m \delta)^2 D_m(\overline{u})$$

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

Motivation 000	Modeling the subgrid heat flux	Building proper models 00000	Results 0000●0000	Conclusions 00
A poste	eriori results?			
	2			
ĉ	$\partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} = \nu \nabla^2 \overline{u} - v$	$-\nabla \overline{p} + \mathbf{f} - \nabla \cdot \tau(\overline{u})$; $\nabla \cdot \overline{u} = 0$	1
	eddy-viscosity \longrightarrow	$\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$		
	$\nu_t \approx$	$(C_m \delta)^2 D_m(\overline{u})$		

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

A But first we need to answer the following **research question**:

 Are eddy-viscosity models for momentum able to provide satisfactory results for turbulent Rayleigh-Bénard convection?

Motivation 000	Modeling the subgrid heat flux 00000000	Building proper models 00000	Results 0000●0000	Conclusions
A poste	eriori results?			
	$\Sigma = (-, \nabla) = - \nabla^2 = -$		— — 0	
C	$u^{\dagger} u + (u \cdot \nabla) u = \nu \nabla^2 u - u$	$-\nabla p + t - \nabla \cdot \tau(u)$; $\nabla \cdot u = 0$	
	eddy-viscosity \longrightarrow	$\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$		
	$ u_t \approx$	$(C_m \delta)^2 D_m(\overline{u})$		

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{uT} - \overline{u} \overline{T}$$

A But first we need to answer the following research question:

 Are eddy-viscosity models for momentum able to provide satisfactory results for turbulent Rayleigh-Bénard convection?

Idea: let's do an LES for momentum and a DNS for temperature!

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions 00
DNS at v	very low <i>Pr</i> numbe	r		

Why? scale separation grows as $\eta_K/\eta_T = Pr^{3/4}$.

 η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions

Why? scale separation grows as $\eta_{\kappa}/\eta_{T} = Pr^{3/4}$. Here: $\eta_{T} \approx 53.2\eta_{\kappa}$ η_{T} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

DNS of a RB at $Ra = 7.14 \times 10^6$ and Pr = 0.005 (liquid sodium) $488 \times 488 \times 1280 \approx 305M$

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions 00

Why? scale separation grows as $\eta_{\kappa}/\eta_{T} = Pr^{3/4}$. Here: $\eta_{T} \approx 53.2\eta_{\kappa}$ η_{T} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions 00

Why? scale separation grows as $\eta_{\kappa}/\eta_{\tau} = Pr^{3/4}$. Here: $\eta_{\tau} \approx 53.2\eta_{\kappa}$ η_{τ} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions

Why? scale separation grows as $\eta_{\kappa}/\eta_{T} = Pr^{3/4}$. Here: $\eta_{T} \approx 53.2\eta_{\kappa}$ η_{T} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions 00

Why? scale separation grows as $\eta_{\kappa}/\eta_{T} = Pr^{3/4}$. Here: $\eta_{T} \approx 53.2\eta_{\kappa}$ η_{T} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Motivation 000	Modeling the subgrid heat flux	Building proper models	Results 00000●000	Conclusions
DNS at v	very low <i>Pr</i> numbe	r		

Why? scale separation grows as $\eta_{\kappa}/\eta_{\tau} = Pr^{3/4}$. Here: $\eta_{\tau} \approx 53.2\eta_{\kappa}$ η_{τ} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 \approx **1911M**

DNS

 10^{8}

 10^{9}

 10^{7}

 10^{6}

Number of grid points

 10^{5}

6.1

6

5.9

5.8

5.7 ∟ 10⁴

Nusselt

⁶F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

⁶F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

⁶F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

⁶F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

26 / 29

 $64 \times 32 \times 32$

 $96 \times 52 \times 52$

 $64\times32\times32$

z

 $96 \times 52 \times 52$

z
Motivation 000	Modeling the subgrid heat flux 00000000	Building proper models	Results 000000000	Conclusions •0
Conclud	ling remarks			
Conclud				

• A new tensor-diffusivity model has been proposed⁷

$$q^{s2PR} \equiv -C_{s2pr} P_{GG^{T}}^{-3/2} R_{GG^{T}}^{1/3} \frac{\delta^2}{12} GG^T \nabla \overline{T}$$

- ullet Locally defined, unconditionally stable and vanishes for 2D flows \checkmark
- ullet Good *a priori* alignment trends and proper near-wall scaling \checkmark
- $\bullet\,$ Eddy-viscosity models work for RB $\checkmark\,$

⁷F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence, Flow Turbul Combust, 105:393-414, 2020.
⁸F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions	
000	00000000		000000000	•0	
Concluding remarks					

• A new tensor-diffusivity model has been proposed⁷

$$q^{s2PR} \equiv -C_{s2pr} P_{GG^T}^{-3/2} R_{GG^T}^{1/3} \frac{\delta^2}{12} GG^T \nabla \overline{T}$$

- ullet Locally defined, unconditionally stable and vanishes for 2D flows \checkmark
- ullet Good *a priori* alignment trends and proper near-wall scaling \checkmark
- $\bullet\,$ Eddy-viscosity models work for RB $\checkmark\,$

Future research:

• A posteriori tests using q^{s2PR} for RB

 ⁷F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence, Flow Turbul Combust, 105:393-414, 2020.
⁸F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.

Motivation	Modeling the subgrid heat flux	Building proper models	Results	Conclusions
000	0000000	00000	000000000	●0
Concludi	ng remarks			

• A new tensor-diffusivity model has been proposed⁷

$$q^{s2PR} \equiv -C_{s2pr} P_{GG^{T}}^{-3/2} R_{GG^{T}}^{1/3} \frac{\delta^2}{12} GG^T \nabla \overline{T}$$

- ullet Locally defined, unconditionally stable and vanishes for 2D flows \checkmark
- ullet Good *a priori* alignment trends and proper near-wall scaling \checkmark
- $\bullet\,$ Eddy-viscosity models work for RB $\checkmark\,$

Future research:

- A posteriori tests using q^{s2PR} for RB
- How δ should be defined for highly anisotropic grids⁸?

⁷F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence, Flow Turbul Combust, 105:393-414, 2020.
⁸F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.

Modeling the subgrid heat flux 00000000 Building proper models

Results 00000000 Conclusions

Thank you for your virtual attendance