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Abstract.

The numerical simulation of multiphase flows presents several challenges, namely the transport of dif-
ferent phases within de domain and the inclusion of capillary effects. Here, these are approached by
enforcing a discrete physics-compatible solution. Extending our previous work on the discretization of
surface tension [N. Valle, F. X. Trias, and J. Castro, “An energy-preserving level set method for multi-
phase flows,” J. Comput. Phys., vol. 400, p. 108991, 2020] with a consistent mass and momentum transfer
a fully energy-preserving multiphase flow method is presented. This numerical technique is showcased
within the simulation of a falling film under several working conditions related to the normal operation
of LiBr absorption chillers.

1 INTRODUCTION

Vertical falling films are a canonical flow configuration which is inherently unstable even at Re = 0.
When surface tension is present, the dynamics of such a system turn even more complex and interesting.
Its application is of interest for many industrial applications in which high heat and mass transfer coef-
ficients are expected with low temperature jumps. These include heat exchangers used in desalination
and gas absorbers, like HCl absorbers used in chlorination processes and, most remarkably, H2O−LiBr
absorption chillers. The ultimate goal is to gain understanding on the instabilities appearing on this flow
as a keystone to approach the heat and mass transfer processes in subsequent steps. In this regard, while
the vapor phase has little effect in the fluid dynamics, it plays a key role when considering heat and mass
transfer, in addition to ruling other non-linear phenomena such as the transport of volatile surfactant.

In the computational front, simulations of Nave et al. [2] replicated the experiments of Nosoko et al. [3]
by using a ghost fluid - level set method and showed potential to capture flows transitioning from 2D
to 3D. The dominant role of inertia in governing the surface waves [4] has been studied by Denner
et al. [5, 6], who performed remarkable experimental and numerical work. The role of capillary flow
separation at increasing heat and mass transfer characteristics was assessed by Dietze and Kneer [7]
from both experimental and numerical results, bolstering the role of surface tension at promoting heat
and mass transfer in this flow configuration. Mass transfer enhancement at the capillary waves region
was also confirmed by Bo et al. [8] in their 2D simulation of a H2O−LiBr absorber at Re = 100 and by
Garcia-Rivera et al. [9].
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Similarly, the work of Albert et al. [10] performed numerical simulations in order to asses the heat and
mass transfer characteristics of falling films, which confirmed, again, the role of flow separation for the
enhancement of such phenomenon. The study of 3D structures in Dietze et al. [11] also observed flow
separation. The assessment of corrugations and its impact in heat and mass transfer phenomena was also
assessed by Dietze [12] for Re = 15.

In this context, the assessment of inertia and capillary terms, which rule the flow instabilities that promote
heat and mass transfer, is of relevance for the development of new H2O−LiBr absorbers. Nonetheless,
the adoption of physically inconsistent schemes is customary for both convective and capillary terms.
Accentuated by the high density ratios, this leads to inaccurate results and even numerical instabilities
that compromise the accurate solution of the system. This highlights, once again, the importance of
physics-compatible discretizations.

The simulation of multiphase flows in a fully physics-compatible way implies the conservation of dis-
crete primary quantities (i.e., mass and momentum) and also secondary ones (i.e., mechanical energy)
according to the physics described in the continuum. Two major obstacles prevent us from this: the
inclusion of surface tension and the advection of a varying density flow.

In order to tackle these issues, symmetry-preserving ideas [13] have been used to set the mathematical
grounds of the energy conservation in the context of fluid flow simulations. Those provide with a high
degree of physical reliability, but also with improved stability.

Regarding the inclusion of surface tension, Fuster [14] developed on top of a Volume Of Fluid (VOF)
method a discretization focusing on preserving the (skew-)symmetry of the operators involved, albeit
overlooked surface tension, which is know to introduce spurious oscillations that may eventually lead
to the divergence of the numerical simulation [15]. In the context of the level set method, our previous
work resulted in the inclusion of curvature in an energy-preserving fashion [1], while the conservation
of momentum is still elusive, a well known issue for diffuse interface models [16]. Within phase-field
methods, the pioneering work of Jacqmin [17] included surface tension in a consistent way in the context
of the Cahn-Hilliard equation. Phase-field methods success at capturing surface tension transfers between
potential (elastic) and kinetic energy rely on taking the gradient of a surface potential, while VOF and
level set methods aim at treating the usual curvature form.

The inclusion of a density-varying flow was tackled by Rudman [18] in the context of VOF by adopting
a consistent mass and momentum transport scheme, which was focused on the simulation of multiphase
flow with large density ratios. This approach was also adopted by Raessi and Pitch [19] and Ghods and
Hermann [20] within the level-set method, while the work of Mirjalili and Mani [21] presented not only
a consistent mass and momentum transport scheme, but also an energy-preserving scheme in the context
of phase-field methods.

In this work, the framework of the well-known (mass) Conservative Level-Set method [22] is adopted
for capturing the moving interface. Base on the energy-preserving level set method introduced in [1], we
produce a fully energy-preserving method for multiphase flows by including a consistent mass and mo-
mentum transport as in Mirjalili and Mani [21]. Equipped with such a physics-compatible discretization,
we target DNS of vertical falling films.

The rest of the paper is organized as follows: in section 2 the governing equations are introduced, in
section 3 the numerical method is detailed, while in section 4 the cases under consideration are intro-
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duced and the results commented. Finally, in section 5 conclusions are drawn and future developments
sketched.

2 MATHEMATICAL MODEL

The subtle physical equilibrium at which the fluid system is subject calls for a careful, and thus conser-
vative, formulation of the governing equations.

The interface separating the two phases is modeled implicitly by means of a marker function θ ∈ [0,1]
which can be regularized as needed, as will be discussed in next section. The values θ = 0 indicate the
liquid phase, θ = 1 corresponds with the gaseous one and θ = 0.5 with the interface location. For a
sufficiently well-behaved θ, the interface normal is defined as

η̂i =
∇θ

|∇θ|
(1)

while the interface curvature is defined as
κ = ∇ · η̂i (2)

Note that when the marker function is the distance function, |∇θ|= 1 and thus η̂i = ∇θ.

The flow is assumed incompressible for both liquid and gaseous phases

∇ ·~u = 0 (3)

under this assumption, the marker function obeys the following transport equation

∂θ

∂t
+∇ · (~uθ) = 0 (4)

while the momentum transport is ruled by the conservative version of the dimensionless Navier-Stokes
equations. Exploiting the Nusselt flat film solution we introduce Reynolds (Re) and Weber (We) numbers.
Additionally, because we are concerned with the solution of both liquid and gaseous phases simultane-
ously, we introduce density (Πρ = ρg/ρl) and viscosity (Πµ = µg/µl) ratios. Accordingly, we consider
the non-dimensional versions of density (Xρ = ρ/ρl ∈ [1,Πρ]) and viscosity (Xµ = µ/µl ∈ [1,Πµ]). We
finally end up with the following momentum equation

3Re

(
∂
(
Xρ~u
)

∂t
+∇ ·

(
Xρ~u⊗~u

))
=−∇p+∇ ·2XµS+Xρĝ (5)

subject to capillary forces at the interface, which impose a stress discontinuity, [σ] as

[σ] η̂i =−Weκη̂i (6)

being σ =−pI+µS the stress tensor, S = 1/2
(
∇~u+(∇~u)T

)
the strain tensor and ĝ = (0,−1,0).

Which introduce the following dimensionless parameters

Re =
ρluNhN

µl
(7)

We =
γ

ρluNh2
N

(8)
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being hN the undisturbed film thickness and uN the mean liquid velocity. The domain under consideration
is assumed to be periodic in both y and z directions, while solid walls are present in the x direction. In a
symmetric setup with respect to the x mid-plane, there is a film flowing down each wall.

No-slip velocity
~u|wall =~0 (9)

and no marker flow
∇θ · n̂|wall = 0 (10)

are prescribed at both solid walls.

3 NUMERICAL METHOD

3.1 Discretization

We proceed as in [1] by discretizing differential geometry operators from a geometrical perspective
and then construct discrete vector calculus operators within a finite volume method. Once we obtain
the discrete versions of the differential geometry operators, we construct the discrete counterparts of
divergence (D), gradient (G), Laplacian (L) and convective (C(·)) operators, resulting in a classical finite
volume, second order, staggered method as introduced by Harlow and Welch [23, 13]. In addition, we
introduce a high resolution advection schemes (C(uf)) via flux limiters in a similar fashion [24].

After adopting a proper regularization, we introduce the following equations for the physical properties

ρf = 1+
(
Πρ−1

)
θf (11)

µf = 1+(Πµ−1)θf (12)

while the original set of governing equations (3-5) is discretized as

Duf = 0c (13)
dθc

dt
=−C(uf)θc (14)

3Re
d (Puf)

dt
=−C(Puf)uf−Gpc +Luf +We KFGθc +Pg (15)

where uf stands for the staggered velocity field, θc is the collocated marker function and pc the collocated
pressure, P = diag (ρf) is the diagonal matrix arrangement of the staggered density, and KF = diag (ϒkc)
is the diagonal arrangement of the staggered curvature that was introduced in Valle et al. [1].

The conservation of mass is a consequence of the conservation of the marker function stated in equa-
tion (14) and the linear reconstruction of density as in equation (11)

dρc

dt
= (ρ1−ρ0)

dθc

dt
=−(ρ1−ρ0)C(uf)θc =−C(uf)ρc (16)

which it is implicitly defined by means of equations (11) and (14).
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3.2 Conservation of energy

The evolution of kinetic energy Ek = 1/2(ρ~u,~u)) for multiphase flows is discussed by first analyzing the
conservation of energy in terms of the velocity field ~u and the conservative equations (16) and (15) as
in [21]

dEk

dt
=

1
2

(
~u,

∂(ρ~u)
∂t

)
+

1
2

(
ρ~u,

∂~u
∂t

)
=

(
~u,

∂(ρ~u)
∂t

)
− 1

2

(
~u,~u

∂ρ

∂t

)
(17)

where we have included the inner product ( f ,g) =
∫

f gdV , which applies to both continuous and discrete
fields. We then obtain the discrete counterpart of equation equation (17) by including equations (15)
and (16), the former requiring the use of the isometric cell-to-face interpolation operator Π in order to
match dimensions of the discrete field. After rearranging terms, we obtain

dEk

dt
=

d (uf,Puf)

dt
=− (uf,C(Puf)uf) +(uf,Gpc) +(uf,Luf) +We(uf,KFGθc) +(uf,Pg)

+
1
2
(uf,UΠC(uf)ρc) (18)

where U = diag(uf) is the diagonal arrangement of the staggered velocity field. Note that the dis-
crete inner product takes the form of a weighted vector dot product, i.e., (uf,Puf) = uf

TVfPuf, where
Vf = diag(v f ) is the diagonal arrangement of the staggered volumes. We have also included the im-
plicit version of the mass transfer equations, even when, as it was discussed above, this equation is not
explicitly computed.

We now analyze the evolution of potential energy,

dEp

dt
=−We(~u,κ∇θ)−

(
~u,Xρ~g

)
(19)

which is composed of the capillary and the buoyancy term. Analogously, the evolution of discrete poten-
tial energy equation is obtained in an analogous way as in equation (19)

dEp

dt
=−We(uf,KFGθc)− (uf,Pg) (20)

where we have adopted an energy-preserving discretization of the capillary terms as we did in [1].

Finally, we are now able to assess the evolution of discrete mechanical energy by including equations (18)
and (20). After rearranging, we obtain

dEm

dt
=−(uf,C(Puf)uf) +

1
2
(uf,UΠC(uf)ρc) +(uf,Luf) < 0 (21)

where the pressure terms has vanished given that Duf = 0, as shown in [13].

We are, however, left with the two first convective terms in equation (21) which should, in virtue of its
convective nature, ideally vanish. From this point onward, we follow Mirjalili and Mani [21] to show
that the adoption of a consistent mass and momentum transport along with a smart interpolation strategy
results in an energy-consistent discretization. To do so, we note first that the momentum convective
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operator is not skew-symmetric due to DPuf 6= 0 if density is not constant. However, due to the mimetic
structure adopted for the construction of C(·), we can decompose C(Puf) as

C(Puf) = Co f f (Puf) +
1
2

diag(ΠDPuf) (22)

The off-diagonal part Co f f (Puf) is a purely skew-symmetric operator, which results into an energy neu-
tral operator, and we are left with the diagonal one 1/2diag(ΠDPuf), where the 1/2 factor arise from
the interpolation applied to the transported velocity field [13].

Introducing equation (22) into equation (21) we obtain

dEm

dt
=−1

2
(uf,diag(ΠDPuf)uf) +

1
2
(uf,UΠC(uf)ρ) +(uf,Luf) (23)

then, exploiting Ab = diag(a)b = diag(b)a = Ba to rearrange diag(ΠDPuf)uf = UΠDPuf first and
Puf = Uρf later, we obtain

dEm

dt
=−1

2
(uf,UΠDUρf) +

1
2
(uf,UΠC(uf)ρc) +(uf,Luf) (24)

We then introduce the definition C(uf) = DUΨ introduced in [24, 1], where Ψ contains the high resolu-
tion cell-to-face interpolation, to yield

dEm

dt
=−1

2
(uf,UΠDUρf) +

1
2
(uf,UΠDUΨρc) +(uf,Luf) (25)

from where we can infer the proper cell-to-face interpolation for the discrete density field as

ρf = Ψρc (26)

such that convective contributions to the discrete mechanical energy cancel out and finally yield

dEm

dt
= (uf,Luf) < 0 (27)

Note, however, that ρc is actually not computed but can easily be obtained from θf as

ρf = ρ0 +(ρ1−ρ0)θf (28)

stating an explicit relationship between the advection of the marker function and the reconstruction of
density. This was previously introduced in the literature, along with other specific techniques, as con-
sistent mass and momentum transport [18, 19, 20, 21]. In summary, we have developed a consistent
discretization that can easily preserve mass, momentum (up to surface tension) and energy.

Following the original work of Rudman [18], the adoption of the FSM method can proceed with slight
modifications. We adopt the LU decomposition approach introduced by Perot [25] in order to show
the integration procedure of an explicit time integration scheme and the modification with respect to
the classical FSM followed by Rudman [18]. First, following the conservative nature of the governing,
equations, we will integrate in time discrete momentum i.e., considering (Puf) as variable on its own.
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Second, we will use the new density and momentum fields in order to obtain a new velocity field which
is consistent with the former two.

The semi-discretized equations (14) and (15) can be compiled together with the velocity-momentum
expression and the usual divergence free constrain Duf = 0 to result in a linear system of equations as

dt 0 0 0
0 dt 0 G
0 If −P 0
0 0 D 0




θc
Puf
uf
pc

=


−C(uf)θc

R(ρf
n,uf

n,pc
n)

0f
0c

 (29)

where R(ρf
n,uf

n,pc
n) = −C(Pnuf

n)uf
n−Luf

n +WeKnGθc
n +Png corresponds with a generalized ex-

plicit treatment of the right hand side of equation (15) without the pressure term. Note that the left-hand-
side is evaluated at time level n+ 1, while the right hand side is evaluated at n (or, in general, previous
time-steps). In an explicit setup as the one described here, this implies that the density field used for the
momentum transport (2nd row) is evaluated at time level n, whereas the density field used to impose the
divergence-free velocity field is evaluated at time level n+1. We can then perform an LU decomposition
as 

dt 0 0 0
0 dt 0 G
0 If −P 0
0 0 D 0

=


dt 0 0 0
0 dt 0 0
0 If −P 0
0 0 D − 1

dt
DP−1G



Ic 0 0 0
0 If 0 1

dt
G

0 0 If
1
dt
P−1G

0 0 0 Ic

 (30)

From here, the modified FSM algorithm follows by the usual solution of the system by LU inversion. We
finally obtain the resulting algorithm as

Algorithm 1 Integration of the governing equations along a Fractional Step Method as in [18]

1 Integrate dθc
dt =−C(uf)θc

n → θc
n+1

2 Integrate d(Puf)
dt = R(ρf

n,uf
n,pc

n) → (Puf)
?

3 Solve Pn+1uf
? = (Puf) → uf

?

4 Solve DP−1Gpc
n+1 = Duf

? → pc
n+1

5 Correct uf
n+1 = uf

?− 1
dtP
−1Gpc → uf

n+1

6 Update (Puf)
n+1 = Pn+1uf

n+1 → (Puf)
n+1

where we have we have re-stated the computation of the (Puf)
n+1 in the equivalent form of step 6 to

reassert that the new momentum field is consistent with the divergence-free velocity and density fields.
We have also redefined pressure to include time integration, as it is customary.

4 PRELIMINARY RESULTS

With the aforementioned discretization in mind, we showcase the proposed DNS discretization of the
system with the simulation of several falling films. Introducing the Kapitza number

Ka =
γ

ρ
1/3
l µ4/3

l

(31)
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we obtain a dimensionless number that is fixed with the physical properties of the working liquid, while
the density (Πρ) and viscosity (Πµ) ratios provide with the information regarding the vapor phase. In
this manner, the liquid-gas pair properties can be fully described by Ka, Πρ and Πµ, as seen in Table1,
while Re is left as the solely variable controlling the fluid dynamics of the system, which i set at Re =
{150,200} to define typical falling film dynamics involved in absorption chillers.

id fluid T (◦C) Xabs Ka Πρ(×10−3) Πµ(×10−3)

A H2O 9.9 0.00 2420 0.60 9.37
B H2O/LiBr 50.0 0.60 443 0.35 2.45
C H2O/Carrol 50.0 0.67 150 0.35 1.10

Table 1: Estimated fluid properties dimensionless groups. For three typical working fluids in an absorption chiller.

The computational domain is a [10hN×Λy×Λz] box with periodic boundaries in both y and z directions,
where Λy = Λx = 100hN , which correspond with the length of a long-wave perturbation. We will denote
x, y and z directions as wall-normal, stream-wise and span-wise, and Nx, Ny and Nz the number of nodes
in the x, y and z directions. The mesh is refined in the vicinity of the flat film thickness and coarsened
at the center of the box, where the gas phase is expected. The following expression gives the refinement
introduced in the x axis

x = Lx

0.5 fx

1+
sinh

(
α

(
i

Nr
−0.5

))
sinh

(
α

2

)
 ∀i ∈ [0,Nr]

x = Lx

 fx +0.5(1−2 fx)

1+
tanh

(
β

i−Nr
Nx−2Nr

−0.5
)

tanh
(

β

2

)
 ∀i ∈ [Nr,Nx−Nr]

x = Lx

(1− fx)+0.5 fx

1+
sinh

(
α

i−Nx+Nr
Nr

−0.5
)

sinh
(

α

2

)
 ∀i ∈ [Nx−Nr,Nx]

(32)

where Lx = 10, fx = 0.2 is the fraction of Lx refined close to the wall, while Nr = Nx/3 is the number of
nodes introduced in the refinement regions. Parameters α = 2 and β = 2 control the smoothness of the
refinements.

We set up a symmetric layout consisting of two films falling down parallel walls. The interface is
initialized as in Dietze et al. [11] by prescribing a perturbation at the film surface as

h = hN

(
1+ εycos

(
2π

y
Λy

)
+ εzcos

(
2π

z
Λz

))
(33)

where h is the perturbed film thickness, εy = 0.2 and εz = 0.05 are chosen according to Dietze et al. [11]
and correspond with amplitude of the perturbation in the y and z directions, respectively. The wave-
length Λy and Λz are sufficiently large to represent long-wave perturbations [4] and the velocity profile
is initialized to the undisturbed flat falling film solution.
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Time integration is performed with a 3rd order Runge-Kutta method for step 1 and a 2nd order Adams-
Bashforth one for step 2. The solver used for the Poisson equation is a Preconditioned Conjugate Gradi-
ent (PCG) method preconditioned with P in order to reduce the condition number of the system.

Results shown in figures 1 and 2 show the impact of decreasing Kapitza number into the dynamics of the
surface. The stabilizing effect of surface tension fades as the Kapitza number is reduced, thus enhancing
the appearance of larger humps and complex instabilities.

In this regard, results show the appearance of a leading depression before the arrival of the wave tip,
which drains fluid in the z direction, which contributes to the appearance of 3D structures as shown
in [11]. This depression is more pronounced in the low Kapitza cases due to the stabilizing effect that
capillary force plays in the development of surface deformations. While the stiffer case A presents a less
marked curvature, it also presents more undulations on the film surface. This results in the appearance
of a more dispersed velocity field on top of the film surface. Conversely, lower Kapitza numbers result
in more acute film deformations, which, on the other hand, contribute to smaller, but also more coherent,
flow patterns.

Figure 1: Velocity magnitude on the film surfaces for cases A, B and C at Re = 150 after T = 100.

Regarding the shape of the film interface, it can be observed how case B produces a more abrupt hump,
showing a marked preceding wave rise and a also a central delay on wave maximum, pushing the flow
in the z direction and thus revealing the incipient formation of a horseshoe pattern. On the other hand,
milder surface effects in case C result in a smoother undulation, which show smaller z axis flow which
is mainly in the y direction. These effects are intensified with the increase of the Reynolds number, as it
can be seen for case B at Re = 200. In that situation, the wave is rolling on top of itself thus increasing
the hump height an resulting into a growing large scale instability. On the other hand, the high Kapitza
case presented in case A shows milder velocity fields at higher Reynolds numbers, which may caused by
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Figure 2: Velocity magnitude on the film surfaces for cases A, B and C at Re = 200 after T = 100.

an intensified momentum diffusion at the interface due to the high frequency pattern that the undulations
on top of the surface form.

5 CONCLUSIONS

The method has been deployed in the DNS of vertical falling films under extreme density ratios, which
pose a major numerical challenge and at the same time are of industrial relevance. Results are in accor-
dance with the expected behavior of such films and reported in both experimental and numerical liter-
ature. In this regard, it is shown capillary forces stabilizing effect on the film dynamics. Accordingly,
reducing surface tension (e.g., by adding surfactants) is observed to enhance instability of the system.

Extending our previous work on the energy-preserving inclusion of curvature [1] and adopting the ideas
presented in Mirjalili and Mani [21] for the discretization of the convective terms, we present a formu-
lation which is mathematically consistent. The aforementioned merits benefit from the adoption of our
heavily algebra-based formulation both for the discretization and the formulation of the modified FSM
as proposed by Rudman [18], revealing the close connection between consistent mass and momentum
transfer and the conservation of energy.

While we succeeded at the formulation of a fully mass conservative and energy-preserving scheme, the
conservation of linear momentum is still unclear [16]. However, as it was already commented in [1],
while the lack of total momentum conservation is an undesired property, the adoption of an energy-
preserving scheme provides a bound on total energy and thus stability. Nonetheless, the conservation of
linear momentum is an active line of research that deserves further discussion.
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