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Motivation

Research question:

@ Can we construct numerical discretizations of the Navier-Stokes

equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?

1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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q
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* OpenFOAM  OpenVFOAM® G’i’“

Main common characteristics of LES in such codes:

@ Unstructured finite volume method, collocated grid
@ Second-order spatial and temporal discretisation
o Eddy-viscosity type LES models

4
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OpenVFOAM® | ES2results of a turbulent channel for at Re, = 180
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2E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of

Computational Physics, 345, 565-595, 2017.
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@ Are LES results are merit of the SGS model?
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@ Are LES results are merit of the SGS model? Apparently NOT!!! X

2E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of
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Symmetry-preserving discretization

Continuous Discrete
0 d
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(V?a,b) = (a,vb) D=DT def—
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Why staggered?

Qs

dus
dt

+ C(us) us = Dus — Gp;

Mus = 0,

Let's consider we have us such as

Mus # 0.
then, we can easily project us
Mus = M(us — Gp,) = 0,

Finally, this leads to a Poisson eq.

MGp. = Mu;,

If Q.G =-M"
<V-a, 90> = - (a) V(,O>
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Why staggered? Everything seems to be in the right place!

dus

Q
S dt

+ C(us) us = Dus — Gp.; Mug = 0,

Let's consider we have us such as
Mug # 0,
then, we can easily project us
Mus = M(us — Gp,) = 0,

Finally, this leads to a Poisson eq.

MGp. = Mu;,

If QG =-M" = (us,Gp.), = ul QsCp. = —(Mus) " p, =
(V-a,p) =—(a,Vy) = (u,Vp)=—(V-u,p)=0
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But is this discrete Laplacian accurate?

Yes, even for distorted unstructured meshes! And symmetries are preserved!
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Everything is easy except the pressure-velocity coupling...
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary*:

e Mass: MI_,ctue = MM ete — Ll MM cue ~ 00 X
e Energy: p. (L—Lc) p_#0x

4F X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated

unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary*:

@ Mass: Ml su. = Ml su, —‘\ LCL_lJI\/IF(_-HsuC ~0. X
o Energy: pc‘\ (L— LC)JPC #0 X

UNSTABLE!!! STABLE
-~ |—
—g“ L = L(:
! I
..8 Very low | | .Too' muc'h
E dissipation | | dissipation
P | |
Q
= [ |
Q | I
Ideal target : 77777 J_»
p((L - Lz:)p<

4D.Santos, J.Muela, N.Valle, F.X.Trias. On the interpolation problem for the Poisson
equation on collocated meshes, ECCOMAS2020. Don't miss it!
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In summary*:
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#Shashank, J.Larsson, G.laccarino. A co-located incompressible Navier-Stokes solver
with exact mass, momentum and kinetic energy conservation in the inviscid limit,

Journal of Computational Physics, 229: 4425-4430,2010.
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Energy-preserving discretisation for LES/DNS with unstructured collocated grids in
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Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated
formulation has been successfully used for DNS/LES simulations®:
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5R.Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. Parallel Direct Poisson solver for
discretizations with one Fourier diagonalizable direction. Journal of Computational

Physics, 230:4723-4741, 2011.
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Despite these inherent limitations, symmetry-preserving collocated
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SF.X.Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Building a staggered formulation
[ JeJelele]

Are staggered and collocated so different at the end?
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‘ALPL‘NMMM‘ Ak :L:L:L:L:
BAVAVAS BAVAVAN
ot \VAV,
D o SEEE
r—l’l;
Collocated:  u™! = (Ic =T . Q. 'P.Tc o) [le +0S]ul = F.T. u?
N ~ W_/ \Wg_/
Fc T. c
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Building a staggered formulation
[ JeJelele]
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Building a staggered formulation
[ JeJelele]

Are staggered and collocated so different at the end?
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. c \e S*)CVS sl c—s c t c clc Hc
Fc T. NSc
uf
Staggered: wu = (I; — QP [ + T os05Ts ] u.
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Building a staggered formulation
[e] lele]e]

Can we have a staggered formulation based only on

collocated operators?

Then, it could be easily implemented in existing collocated codes such as OpenFOAM

u?
Staggered: wu?*! = (I, —Q_'P, [Is + M ess0fTsc] u;
F, T,

Similar approaches have been proposed in the literature before®:7:8:9:10,

B.Perot. Conservative properties of unstructured staggered meshs chemes. Journal of Comp. Physics, 159: 58-89, 2000

X.Zhang, D.Schmidt, B.Perot. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh
scheme for fluid dynamics. Journal of Computational Physics, 175: 764-791, 2002.

K.Mahesh, G.Constantinescu, P.Moin. A numerical method for large-eddy simulation in complex geometries. Journal of
Computational Physics,197: 215-240, 2004.

J.E.Hicken, F.E.Ham, J.Militzer, M.Koksal. A shift transformation for fully conservative methods: turbulence simulation
on complex, unstructured grids. Journal of Computational Physics, 208:704-734, 2005.

L.Jofre, O.Lehmkuhl, J.Ventosa, F.X.Trias, A.Oliva. Conservation properties of unstructured finite-volume mesh schemes
for the Navier-Stokes equations. Numerical Heat Transfer, Part B, 65:1-27, 2014. 17 /22
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6B.Perot. Conservative properties of unstructured staggered meshs chemes. Journal of Comp. Physics, 159: 58-89, 2000

7X.Zhang, D.Schmidt, B.Perot. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh
scheme for fluid dynamics. Journal of Computational Physics, 175: 764-791, 2002.

8K,Mahesh, G.Constantinescu, P.Moin. A numerical method for large-eddy simulation in complex geometries. Journal of
Computational Physics,197: 215-240, 2004.
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Building a staggered formulation
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Results for a turbulent channel flow at Re, = 180
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Building a staggered formulation
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Dispersion errors analysis

uf
A
) -1 -
Staggered CO": wull = (ls— Q. 'P) [ls+ Teos0Te e Jus
g g
Fs T,
T
[ Cc
5 3m/4
£
£
=
5
>
S 2
=
2
&
5
o
= /4
0
0 /4 /2 3m/4 T

wavenumber



Building a staggered formulation
[e]e]e] o]

Dispersion errors analysis

uf
A
' —1 -
Staggered CO": wull = (ls— Q. 'P) [ls+ Teos0Te e Jus
g g
Fs Ts
T
[ CC
0
— CEle G T e
5 3m/4
£
]
=
5
>
S 2
=
2
=
£
o
= 4
/\\
0
0 /4 /2 3m/4 T

wavenumber



Building a staggered formulation
[e]e]e] o]

Dispersion errors analysis

p

uS
A
Staggered C1': ul™! = (I, — Q. 'PY) [ls+ Fre . o0To . cF |us
Y Y
FS TS
Filter: F =T ,...s (F=F" and positive semi-definite)
T
_— CC
0
— Gl Ce Ty
. L 5 0% o T
g A Ci=FC_F withF=T_, I, .
£
)
>
g 2
=
2
&
g
(=]
= 4
/\\
O I
0 /4 /2 3n/4 n
wavenumber

19 /22



Building a staggered formulation
[e]e]e] o]

Dispersion errors analysis

p

uS
A
Staggered C2':  u?*! = (Is— Q. 'P) [Is + FFFCHSCCFSHCFF] u,
g g
FS TS
Filter: F =T, ... .s (F=FT and positive semi-definite)
T
[ CC
0.
— Gl G T e
By C=F C'F with F=T,_, T, ,,
£ -
E CS=F CSF
o
>
s a2
=l
2
&
5
o
= /4
/\\
O L
0 /4 /2 3n/4 T
wavenumber



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

uS
1 —]_ ’ = =
Staggered C2':  u?! = (s — Q. 'Po) [Is + FFIcs05T o, FF| us
~- AN ~~ /
Fs Ts
20 :
1 | —— DNS (KMM)
16 |
14t
12t
510 |
8 L.
6 L.
4
2
-
0 = R
1 10 100

20 /22



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

~

Staggered C52,: U2+1 = (IS - Qs_lps) [IS + EEI—CHS(}\?I—SHCFF] us

_

"

~-
Fs Ts

| —— DNS (KMM)

8 L.
L 16x16x8 /

1 10 100

20 /22



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

uS
Staggered C52,: U2+1 = (IS - Qs_lps) [IS + EEI—CHS(}\?I—SHCFF] us
20 ‘
1§ L —— DNS(KMM)
16
12 | /
510 | 4
g . —— 32x32x16 4
6 16x16x8 /
X //
1 10 100

20 /22



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

~

Staggered C52,: U2+1 = (IS - Qs_lps) [IS + EEI—CHS(}\?I—SHCFF] us

_

~ ~
Fs Ts
20 :
1g L — DNS (KMM)
16
14 | a—
12
S10} 64x64x32

g | —— 32x32x16 /
L 16x16x8 /

/
1 10 100

20 /22



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

~

Staggered C52,: U2+1 = (IS - Qs_lps) [IS + EEI—CHS(}\?I—SHCFF] us

_

g h
Fs TS
20 :
1s L —— DNs&mMM)
16 e
"
14
1o | —— 128x128x64 7
290 L 64x64x32 7
v /‘
g [ —— 32x32x16 Y.
6 | —— 16x16x8 ya
4 #
2 _'://
0 B S
1 10 100

20 /22



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

~

Staggered C52,: U2+1 = (IS - Qs_lps) [IS + EEI—CHS(}\?I—SHCFF] us

_

~ ~
Fs Ts

20 :

1g L — DNS(KMM)

16

IV 160x160x80
12 L —— 128x128x64
’vg 10 F 64x64x32
g L. —— 32x32x16

¢
L 16x16x8 /
/

—

1 10 100

20 /22



Building a staggered formulation
[e]e]e]e] )

Results for a turbulent channel flow at Re, = 180

ug

Staggered C2': wul™! = (I — Q7 'P) [ls + FFT o .o05T o . FF| us

~- AN ~~ /
Fs Ts

20

18 L — DNS (KMM)

6L —— 200x200x100

IV 160x160x80

L — 128x128x64

510 | 64x64x32

g | —— 32x32x16 /f

6 —— 16x16x8 A

4 /

2 e

0 o

1 10 100

20 /22



Conclusions
e0

Concluding remarks

o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.

21/22



Conclusions
e0

Concluding remarks

o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.

@ Main drawback of collocated formulations: you
either have checkerboard or some (small) amount
of artificial dissipation due to pressure term.

21/22



Conclusions
e0

Concluding remarks

o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.

@ Main drawback of collocated formulations: you
either have checkerboard or some (small) amount
of artificial dissipation due to pressure term.

@ Despite this, the CFD community have generally
adopted collocated formulations due to the inherent —=-=seti =
difficulties to formulate a simple and robust
staggered discretization of momentum. iififfllm e

— A potential solution has been presented here... o S, = B

21/22



Conclusions
e0

Concluding remarks

o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.

@ Main drawback of collocated formulations: you
either have checkerboard or some (small) amount
of artificial dissipation due to pressure term.

@ Despite this, the CFD community have generally
adopted collocated formulations due to the inherent —=-=seti =
difficulties to formulate a simple and robust
staggered discretization of momentum. iiff;fiﬁlm e

— A potential solution has been presented here... oo . < B

Future research:
o Complete the analysis for higher Re. (running now...)

@ Test for complex geometries using unstructured meshes (on-going)
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Thank you for your virtual
attendance
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