Building a staggered formulation

Centre Tecnològic de Transferència de Calor UNIVERSITAT POLITÈCNICA DE CATALUNYA

Symmetry-preserving discretization of Navier-Stokes on unstructured grids: collocated vs staggered

F.Xavier Trias¹, Nicolás Valle¹, Andrey Gorobets², Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Keldysh Institute of Applied Mathematics of RAS, Russia

Motivation 0000	Preserving symmetries: collocated vs staggered	Building a stagge

Contents

- Preserving symmetries: collocated vs staggered
- Building a staggered formulation

4 Conclusions

Motivation ●000	Preserving symmetries: 00000000	collocated vs staggered	Building a staggered formulation	Conclusions
Motivati	on			

Research question:

• Can we construct numerical discretizations of the Navier-Stokes equations suitable for **complex geometries**, such that the **symmetry properties** are exactly preserved?

DNS¹ of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Motivation 0●00	Preserving symmetries: 000000000	collocated vs staggered	Building a staggered formula	ation Conclusions
Motivati	on			
Frequently	used general p	ourpose CFD cod	es:	
• STA	R-CCM+	CD-adapco	SIEMENS	
• ANS	SYS-FLUENT			
• Coc	le-Saturne		edf	GPL

CDF

• OpenFOAM

Open∇FOAM®

Motivation 0●00	Preserving symmetries: 000000000	collocated vs staggered	Building a staggered formula	ation Conclusions
Motiva	tion			
Frequent	ly used general _l	purpose CFD coc	les:	
• ST.	AR-CCM+	CD-adapco	SIEMENS	
• AN	SYS-FLUENT	ANSYS" FLUENT		
• Cc	ode-Saturne		edf	GPL

OpenFOAM Open∇FOAM®

Main common characteristics of LES in such codes:

- Unstructured finite volume method, collocated grid
- Second-order spatial and temporal discretisation
- Eddy-viscosity type LES models

Motivation 00●0	Preserving symmetries: collocated vs staggered	Building a staggered formulation	Conclusions

Open ∇ FOAM® LES² results of a turbulent channel for at $Re_{\tau} = 180$

²E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method* for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation 00●0	Preserving symmetries: collocated vs staggered	Building a staggered formulation	Conclusions

Open ∇ FOAM® LES² results of a turbulent channel for at $Re_{\tau} = 180$

• Are LES results are merit of the SGS model?

²E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation 00●0	Preserving symmetries: collocated vs staggered	Building a staggered formulation	Conclusions 00

Open ∇ FOAM® LES² results of a turbulent channel for at $Re_{\tau} = 180$

• Are LES results are merit of the SGS model? Apparently NOT !!! X

²E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation 000●	Preserving symmetries: collocated vs staggered	Building a staggered formulation	Conclusions 00

Open ∇ FOAM® LES³ results of a turbulent channel for at $Re_{\tau} = 180$

 $\nu_{num} \neq 0$

³E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Motivation 000●	Preserving symmetries: collocated vs staggered	Building a staggered formulation	Conclusions 00

Open ∇ FOAM® LES³ results of a turbulent channel for at $Re_{\tau} = 180$

 $\nu_{SGS} < \nu_{num} \neq 0$

³E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Building a staggered formulation

Conclusions

Symmetry-preserving discretization

Continuous

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Preserving symmetries: collocated vs staggered •00000000

Building a staggered formulation

Symmetry-preserving discretization

Continuous

Discrete

Building a staggered formulation

Conclusions

Symmetry-preserving discretization

Continuous

Discrete

$$\langle \boldsymbol{a}, \boldsymbol{b}
angle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

Building a staggered formulation

Conclusions

Symmetry-preserving discretization

Continuous

Discrete

 $\langle \boldsymbol{C} (\boldsymbol{u}, \varphi_1), \varphi_2 \rangle = - \langle \boldsymbol{C} (\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$

 $\mathsf{C}\left(\boldsymbol{u}_{h}\right)=-\mathsf{C}^{T}\left(\boldsymbol{u}_{h}\right)$

Building a staggered formulation

Conclusions

Symmetry-preserving discretization

Continuous

Discrete

$$\langle oldsymbol{a},oldsymbol{b}
angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

 $C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$ $\Omega \mathbf{G} = -\mathbf{M}^T$

Building a staggered formulation

Conclusions

Symmetry-preserving discretization

Continuous

Discrete

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

$$\Omega \frac{d\boldsymbol{u}_{h}}{dt} + C(\boldsymbol{u}_{h})\boldsymbol{u}_{h} = \boldsymbol{\mathsf{D}}\boldsymbol{u}_{h} - \boldsymbol{\mathsf{G}}\boldsymbol{p}_{h}$$
$$\mathsf{M}\boldsymbol{u}_{h} = \boldsymbol{\mathsf{0}}_{h}$$

$$\langle oldsymbol{a},oldsymbol{b}
angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$$

$$\left\langle \boldsymbol{a}_{h}, \boldsymbol{b}_{h}
ight
angle_{h} = \boldsymbol{a}_{h}^{T} \Omega \boldsymbol{b}_{h}$$

.

 $\begin{array}{l} \langle \boldsymbol{C} \left(\boldsymbol{u}, \varphi_1 \right), \varphi_2 \rangle = - \left\langle \boldsymbol{C} \left(\boldsymbol{u}, \varphi_2 \right), \varphi_1 \right\rangle \\ \langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = - \left\langle \boldsymbol{a}, \nabla \varphi \right\rangle \\ \left\langle \nabla^2 \boldsymbol{a}, \boldsymbol{b} \right\rangle = - \left\langle \boldsymbol{a}, \nabla^2 \boldsymbol{b} \right\rangle \end{array}$

$$C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$$
$$\Omega G = -M^T$$
$$D = D^T \quad def - D$$

Motivation	

Building a staggered formulation

Conclusions

Building a staggered formulation

Conclusions

Building a staggered formulation

Conclusions

Motivation	

Building a staggered formulation

Conclusions

Building a staggered formulation

Conclusions

Building a staggered formulation

Conclusions

Motivation	

Building a staggered formulation

Conclusions

Why staggered?

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}\left(\boldsymbol{u}_{s}\right)\boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Motivation	Preserving symmetries: collocated vs staggered
0000	0000000

Conclusions

Why staggered?

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}(\boldsymbol{u}_{s}) \boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Let's consider we have u_s such as

 $Mu_s \neq 0_c$

Motivation	Preserving symmetries: collocated vs staggered
0000	0000000

Conclusions

Why staggered?

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}\left(\boldsymbol{u}_{s}\right)\boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Let's consider we have u_s such as

 $Mu_s \neq 0_c$

then, we can easily project u_s

 $\boldsymbol{u}_s = \boldsymbol{u}_s - \boldsymbol{G}\boldsymbol{p}_c$

Motivation	Preserving symmetries: collocated vs staggered
0000	0000000

Conclusions

Why staggered?

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}\left(\boldsymbol{u}_{s}\right)\boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Let's consider we have u_s such as

 $Mu_s \neq 0_c$

then, we can easily project u_s

 $\mathsf{M}\boldsymbol{u}_{s} = \mathsf{M}(\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}) = \boldsymbol{0}_{c}$

Motivation	Preserving symmetries: collocated vs staggered
0000	0000000

Conclusions

Why staggered?

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}\left(\boldsymbol{u}_{s}\right)\boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Let's consider we have u_s such as

 $Mu_s \neq 0_c$

then, we can easily project u_s

$$\mathsf{M}\boldsymbol{u}_{s} = \mathsf{M}(\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}) = \boldsymbol{0}_{c}$$

Finally, this leads to a Poisson eq.

 $MGp_c = Mu_s$

Motivation	Preserving symmetries: collocated vs staggered
0000	0000000

Conclusions

Why staggered?

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}\left(\boldsymbol{u}_{s}\right)\boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Let's consider we have u_s such as

 $Mu_s \neq 0_c$

then, we can easily project u_s

 $\mathsf{M}\boldsymbol{u}_{s} = \mathsf{M}(\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}) = \boldsymbol{0}_{c}$

Finally, this leads to a Poisson eq.

 $MGp_c = Mu_s$

If
$$\Omega_s \mathbf{G} = -\mathbf{M}^T$$

 $\langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = - \langle \boldsymbol{a}, \nabla \varphi \rangle$

Why staggered? Everything seems to be in the right place!

$$\Omega_{s} \frac{d\boldsymbol{u}_{s}}{dt} + \mathsf{C}(\boldsymbol{u}_{s}) \boldsymbol{u}_{s} = \mathsf{D}\boldsymbol{u}_{s} - \mathsf{G}\boldsymbol{p}_{c}; \quad \mathsf{M}\boldsymbol{u}_{s} = \boldsymbol{0}_{c}$$

Let's consider we have u_s such as

 $Mu_s \neq 0_c$

then, we can easily project u_s

 $\mathsf{M}\boldsymbol{u}_{\boldsymbol{s}} = \mathsf{M}(\boldsymbol{u}_{\boldsymbol{s}} - \mathsf{G}\boldsymbol{p}_{\boldsymbol{c}}) = \boldsymbol{0}_{\boldsymbol{c}}$

Finally, this leads to a Poisson eq.

 $MGp_c = Mu_s$

If
$$\Omega_{s}G = -M^{T} \Longrightarrow \langle \boldsymbol{u}_{s}, G\boldsymbol{p}_{c} \rangle_{h} = \boldsymbol{u}_{s}^{T}\Omega_{s}G\boldsymbol{p}_{c} = -(M\boldsymbol{u}_{s})^{T}\boldsymbol{p}_{c} = 0$$

 $\langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = -\langle \boldsymbol{a}, \nabla \varphi \rangle \Longrightarrow \langle \boldsymbol{u}, \nabla p \rangle = -\langle \nabla \cdot \boldsymbol{u}, p \rangle = 0$

Building a staggered formulation

Conclusions

But is this discrete Laplacian accurate?

Without stretching

With stretching

$$abla^2 arphi = f(x,y) \quad \text{with } f(x,y) =
abla^2 (k^{-2} \sin(kx) \sin(ky)) \text{ and } k = 25\pi$$

Building a staggered formulation 00000

Conclusions

But is this discrete Laplacian accurate?

Without stretching

With stretching

$$abla^2 \varphi = f(x,y)$$
 with $f(x,y) =
abla^2 (k^{-2} \sin(kx) \sin(ky))$ and $k = 25\pi$

10/22

Building a staggered formulation 00000

Conclusions

But is this discrete Laplacian accurate?

Yes, even for distorted unstructured meshes! And symmetries are preserved!

Without stretching

With stretching

$$abla^2 \varphi = f(x,y)$$
 with $f(x,y) =
abla^2 (k^{-2} \sin(kx) \sin(ky))$ and $k = 25\pi$

10/22

Building a staggered formulation

Conclusions

Then, why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

$$\Omega_s \frac{d\boldsymbol{u}_s}{dt} + \mathsf{C}(\boldsymbol{u}_s) \boldsymbol{u}_s = \mathsf{D}\boldsymbol{u}_s - \mathsf{G}\boldsymbol{p}_c; \quad \mathsf{M}\boldsymbol{u}_s = \boldsymbol{0}_c$$

In staggered meshes

- $p-u_s$ coupling is naturally solved \checkmark
- $C(u_s)$ and D difficult to discretize X

Building a staggered formulation

Conclusions

Then, why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

$$\Omega_{c} \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s}) \boldsymbol{u}_{c} = \boldsymbol{\mathsf{D}} \boldsymbol{u}_{c} - \boldsymbol{\mathsf{G}}_{c} \boldsymbol{p}_{c}; \quad \boldsymbol{\mathsf{M}}_{c} \boldsymbol{u}_{c} = \boldsymbol{\mathsf{0}}_{c}$$

In collocated meshes

- *p*-*u_c* coupling is cumbersome X
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory,... 🗸

Building a staggered formulation

Conclusions

Then, why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...

STAR-CCM+
 ANSYS-FLUENT
 Code-Saturne
 OpenFOAM
 OpenFOAM
 OpenFOAM

$$\Omega_{c} \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s}) \boldsymbol{u}_{c} = \mathsf{D}\boldsymbol{u}_{c} - \mathsf{G}_{c}\boldsymbol{p}_{c}; \quad \mathsf{M}_{c}\boldsymbol{u}_{c} = \boldsymbol{0}_{c}$$

In collocated meshes

- *p*-*u_c* coupling is cumbersome X
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory,... 🗸

Μ	ot			io		
0000						

Building a staggered formulation

Conclusions

Pressure-velocity coupling on staggered grids

Works perfectly!

 \boldsymbol{u}_s
Motivation	

Building a staggered formulation

Conclusions

Pressure-velocity coupling on staggered grids

Works perfectly!

M**u**s

Motivation	

Building a staggered formulation

Conclusions

Pressure-velocity coupling on staggered grids

Motivation	Pre
	00

Building a staggered formulation

Conclusions 00

Pressure-velocity coupling on staggered grids

Motivation	Preserving s	
	00000000	

Building a staggered formulation

Conclusions

Pressure-velocity coupling on staggered grids

$$\boldsymbol{u}_{s} = \boldsymbol{u}_{s} - \mathsf{G} \underbrace{\mathsf{L}^{-1}\mathsf{M}\boldsymbol{u}_{s}}_{\boldsymbol{p}_{c}}$$

Motivation	Preserving sym
	000000000

Building a staggered formulation

Conclusions

Pressure-velocity coupling on staggered grids

Motivation	Preserving sym
	000000000

Building a staggered formulation

Conclusions

Pressure-velocity coupling on staggered grids

Pressure-velocity coupling on collocated grids

Conclusions

Pressure-velocity coupling on collocated grids

Pressure-velocity coupling on collocated grids

Conclusions

Pressure-velocity coupling on collocated grids

Conclusions

Pressure-velocity coupling on collocated grids

Building a staggered formulation

Conclusions

Pressure-velocity coupling on collocated grids

Conclusions

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

To preserve symmetry we impose $\Gamma_{s \to c} = \Omega_c^{-1} \Gamma_{c \to s}^T \Omega_s$. This leads to $M\Gamma_{c \to s} \boldsymbol{u}_c = M\Gamma_{c \to s} \boldsymbol{u}_c - L_c L^{-1} M\Gamma_{c \to s} \boldsymbol{u}_c \approx \boldsymbol{0}_c \boldsymbol{X}$

where $L_c = -M\Gamma_{c \to s} \Omega_c^{-1} \Gamma_{c \to s}^T M$ (wide-stencil discrete Laplacian).

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

To preserve symmetry we impose $\Gamma_{s \to c} = \Omega_c^{-1} \Gamma_{c \to s}^T \Omega_s$. This leads to $M\Gamma_{c \to s} \boldsymbol{u}_c = M\Gamma_{c \to s} \boldsymbol{u}_c - L_c L^{-1} M\Gamma_{c \to s} \boldsymbol{u}_c \approx \boldsymbol{0}_c \boldsymbol{X}$

where $L_c = -M\Gamma_{c \to s}\Omega_c^{-1}\Gamma_{c \to s}^{T}M$ (wide-stencil discrete Laplacian). Moreover, contribution to kinetic enegy: $p_c(L - L_c)p_c \neq 0$ X

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} L_{c} L^{-1} M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{X}$
- Energy: $\boldsymbol{p}_{c} (L L_{c}) \boldsymbol{p}_{c} \neq 0 \boldsymbol{X}$

Conclusions

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (L_{c}L^{-1})M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c(L-L_c)p_c \neq 0$ X

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} [L_{c}L^{-1}]M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \times$ Energy: $\boldsymbol{p}_{c}(L L_{c}) \boldsymbol{p}_{c} \neq 0 \times$

Conclusions 00

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (L_{c}L^{-1})M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0 X$

⁴D.Santos, J.Muela, N.Valle, F.X.Trias. *On the interpolation problem for the Poisson equation on collocated meshes*, **ECCOMAS2020**. Don't miss it!

Conclusions

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} \left[L_{c} L^{-1} \right] M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0 X$

⁴Shashank, J.Larsson, G.laccarino. *A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit,* **Journal of Computational Physics**, 229: 4425-4430,2010.

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (L_{c}L^{-1})M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0 X$

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁴:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} \left[L_{c} L^{-1} \right] M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c(L-L_c)p_c \neq 0 X$

⁴E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. Energy-preserving discretisation for LES/DNS with unstructured collocated grids in OpenFOAM, ECCOMAS2020. Don't miss it!

Conclusions

Pressure-velocity coupling on collocated grids Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations⁵:

⁵R.Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. *Parallel Direct Poisson solver for discretizations with one Fourier diagonalizable direction*. Journal of Computational **Physics**, 230:4723-4741, 2011.

Conclusions

Pressure-velocity coupling on collocated grids Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations⁵:

⁵F.X.Trias and O.Lehmkuhl. *A self-adaptive strategy for the time-integration of Navier-Stokes equations*. **Numerical Heat Transfer, part B**, 60(2):116-134, 2011.

Are staggered and collocated so different at the end?

Naïve staggered:
$$\boldsymbol{u}_{s}^{n+1} = \underbrace{\mathsf{F}_{s}\mathsf{\Gamma}_{c}\rightarrow \mathsf{S}}_{\widetilde{NS}_{s}} \mathbf{u}_{s}^{n}$$

$$\Gamma_{s \to c} (\widetilde{NS}_s)^n = (\widetilde{NS}_c)^n \Gamma_{c \to s}$$

Can we have a staggered formulation based only on collocated operators?

Then, it could be easily implemented in existing collocated codes such as OpenFOAM

Staggered:
$$\boldsymbol{u}_{s}^{n+1} = \underbrace{(\boldsymbol{I}_{s} - \boldsymbol{\Omega}_{s}^{-1}\boldsymbol{\mathsf{P}}_{s})}_{\boldsymbol{\mathsf{F}}_{s}} \underbrace{[\boldsymbol{I}_{s} + \boldsymbol{\Gamma}_{c \to s} \partial_{t}^{c}\boldsymbol{\Gamma}_{s \to c}]}_{\boldsymbol{\mathsf{T}}_{s}} \boldsymbol{u}_{s}$$

Similar approaches have been proposed in the literature before^{6,7,8,9,10}.

⁶B.Perot. Conservative properties of unstructured staggered meshs chemes. Journal of Comp. Physics, 159: 58-89, 2000 7

⁷ X.Zhang, D.Schmidt, B.Perot. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. Journal of Computational Physics, 175: 764-791, 2002.

^oK.Mahesh, G.Constantinescu, P.Moin. A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics,197: 215-240, 2004.

⁹ J.E.Hicken, F.E.Ham, J.Militzer, M.Koksal. A shift transformation for fully conservative methods: turbulence simulation on complex, unstructured grids. Journal of Computational Physics, 208:704-734, 2005.

¹⁰L.Jofre, O.Lehmkuhl, J.Ventosa, F.X.Trias, A.Oliva. Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numerical Heat Transfer, Part B, 65:1-27, 2014.

Can we have a staggered formulation based only on collocated operators?

Then, it could be easily implemented in existing collocated codes such as OpenFOAM

Staggered:
$$\boldsymbol{u}_{s}^{n+1} = \underbrace{(\boldsymbol{I}_{s} - \boldsymbol{\Omega}_{s}^{-1} \boldsymbol{\mathsf{P}}_{s})}_{\boldsymbol{\mathsf{F}}_{s}} \underbrace{[\boldsymbol{I}_{s} + \boldsymbol{\Gamma}_{c \to s} \partial_{t}^{c} \boldsymbol{\Gamma}_{s \to c}] \boldsymbol{u}_{s}}_{\boldsymbol{\mathsf{T}}_{s}}$$

Similar approaches have been proposed in the literature before^{6,7,8,9,10}.

Research question: then, why at the end collocated approach seems to be the winner?

⁶B.Perot. Conservative properties of unstructured staggered meshs chemes. Journal of Comp. Physics, 159: 58-89, 2000

⁸K.Mahesh, G.Constantinescu, P.Moin. A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics,197: 215-240, 2004.

⁷ X.Zhang, D.Schmidt, B.Perot. Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. Journal of Computational Physics, 175: 764-791, 2002.

⁹ J.E.Hicken, F.E.Ham, J.Militzer, M.Koksal. A shift transformation for fully conservative methods: turbulence simulation on complex, unstructured grids. Journal of Computational Physics, 208:704-734, 2005.

¹⁰L.Jofre, O.Lehmkuhl, J.Ventosa, F.X.Trias, A.Oliva. Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numerical Heat Transfer, Part B, 65:1-27, 2014.

Building a staggered formulation 00000

Conclusions

Staggered
$$C_s^{0'}$$
: $\boldsymbol{u}_s^{n+1} = \underbrace{(I_s - \Omega_s^{-1} \mathsf{P}_s)}_{\mathsf{F}_s} \underbrace{\begin{bmatrix} I_s + & \Gamma_{c \to s} \partial_t^c \mathsf{\Gamma}_{s \to c} \end{bmatrix}}_{\mathsf{T}_s} \boldsymbol{u}_s$

Building a staggered formulation

Conclusions

Staggered
$$C_s^{0'}$$
: $\boldsymbol{u}_s^{n+1} = \underbrace{(I_s - \Omega_s^{-1} \mathsf{P}_s)}_{\mathsf{F}_s} \underbrace{\begin{bmatrix} I_s + & \Gamma_{c \to s} \partial_t^c \mathsf{\Gamma}_{s \to c} \end{bmatrix}}_{\mathsf{T}_s} \boldsymbol{u}_s$

Building a staggered formulation

Building a staggered formulation

Conclusions

Concluding remarks

• Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.

Conclusions

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Main drawback of **collocated** formulations: you either have **checkerboard** or some (small) amount of **artificial dissipation** due to pressure term.

Conclusions

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Main drawback of collocated formulations: you either have checkerboard or some (small) amount of artificial dissipation due to pressure term.
- Despite this, the CFD community have generally adopted collocated formulations due to the inherent difficulties to formulate a simple and robust staggered discretization of momentum.

Conclusions

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Main drawback of collocated formulations: you either have checkerboard or some (small) amount of artificial dissipation due to pressure term.
- Despite this, the CFD community have generally adopted collocated formulations due to the inherent difficulties to formulate a simple and robust staggered discretization of momentum.

 \implies A potential solution has been presented here...

Future research:

- Complete the analysis for higher Re_{τ} (running now...)
- Test for complex geometries using unstructured meshes (on-going)

Thank you for your virtual attendance