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1. Motivation of this work
Motivation: Is it possible to find an energy-preserving unconditionally stable frac-
tional step method on collocated grids for any mesh?

Figure 1: Example of a
highly distorted mesh.
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Motivation of this work

Figure 2: Zoom of the top part of the previous mesh.
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2. Definition of basic collocated operators

Incompressible NS equations

∂u
∂t + (u · ∇)u = 1

Re ∆u − ∇p, (1)

∇ · u = 0. (2)

u
2

u
1

p

Figure 3: General unstrucured mesh.
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Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an
arbitrary collocated mesh

Ωduc
dt + C(us)uc = −Duc − ΩGcpc , (3)

Mus = 0c . (4)

pc = (p1, ..., pn)T ∈ Rn is the cell-centered pressure.
uc = (u1, u2, u3)T ∈ R3n , where ui = ((ui)1, ..., (ui)n)T are the vectors
containing the velocity components corresponding to the xi−spatial direction.
us = ((us)1, ..., (us)m)T ∈ Rm is the staggered velocity.
The velocities are related via the interpolator from cells to faces
Γc→s ∈ Rm×3n =⇒ us = Γc→suc .
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Definition of basic collocated operators

The (volumetric) interpolator from cells to faces can be constructed as follows:

Γc→s = NΠ, (5)

where
N = (Ns,x Ns,y Ns,z) ∈ Rm×3m where Ns,x , Ns,y , Ns,z ∈ Rm×m are diagonal
matrices containing the xi spatial component of the face normal vectors.
Π = I3 ⊗ Πc→s ∈ R3m×3n .
Πc→s ∈ Rm×n is the scalar cell-to-face interpolator.
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Definition of basic collocated operators

Ωc ∈ Rn×n is a diagonal matrix with the cell-centered volumes
=⇒ Ω = I3 ⊗ Ωc .
Cc(us) ∈ Rn×n is the cell-centered convective operator for a discrete scalar

field =⇒ C(us) = I3 ⊗ Cc(us).
Dc ∈ Rn×n is the cell-centered diffusive operator for a discrete scalar field

=⇒ D = I3 ⊗ Dc .
Finally,

Gc ∈ R3n×n represents the discrete collocated gradient.
M ∈ Rn×m is the face-to-cell discrete divergence operator.
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Other useful operators

G = −Ω−1
s MT ,

L = MG = −MΩ−1
s MT ,

Lc = McGc = −MΓc→sΩ−1ΓT
c→sMT ,

Γs→c = Ω−1ΓT
c→sΩs . (6)

where G is the center-to-face staggered gradient, L is the Laplacian operator, Lc is
the collocated-Laplacian operator and Γs→c is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246–267, 2014.
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3. Conservation of global kinetic energy

Global kinetic energy equation

d ||uc ||2

dt = −uT
c (C(us) + CT (us))uc − uT

c (D + DT )uc

−uT
c ΩGcpc − pT

c GT
c ΩT uc . (7)

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:
C(us) = −CT (us), i.e, the convective operator should be skew-symmetric.
(−ΩGc)T = MΓc→s , because Mus = 0c .

Question: Can we find a mathematical reason to justify these relations, instead of
a physical one?
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Mimicking continuos properties

A and B are two vectorial spaces.
πh is a discretization operator.
T is a continuous operator.
Ah, Bh and Th are the discrete counterparts of A, B and T , respectively.

We will require this diagram to be commutative.
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Mimicking continuos properties: relation between gradient
and divergence operators

From a continuos level, the adjoint operator of the divergence is the gradient:

< ∇ · a|b >= − < a|∇b >, (8)

where < a|b >=
∫

Ω abdV represents the inner product of functions. The
discrete counterpart of the inner product is < ah|bh >Ω= aT

h Ωbh.

Applying πh to (8) we obtain:

< Ω−1
1 Mah|bh >Ω1= − < ah|Gbh >Ω2 . (9)

If Ω1 = Ω and Ω2 = Ωs , then:

G = −Ω−1
s MT . (10)

Finally, from the skew-symmetry of the continuos convective operator follows
that C(us) should be skew-symmetric.
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4. A stable pressure gradient interpolation

Solving 1D NS equations with a fractional step method interpolating the pressure
gradient with a mid-point scheme (checkerboard is not corrected):

Figure 4: Vel. for max. aspect ratio
1 (mid-point scheme) Figure 5: Eigenvalues of L − Lc
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A stable pressure gradient interpolation

Figure 6: Vel. for max. aspect ratio 20
(mid-point scheme) Figure 7: Eigenvalues of L − Lc
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A stable pressure gradient interpolation

Figure 8: Vel. for max. aspect ratio
40 (mid-point scheme) Figure 9: Eigenvalues of L − Lc
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A stable pressure gradient interpolation

Mid-point scheme: ϕf = 1
2 (ϕc1 + ϕc2).

Volume weighted scheme: ϕf = Vs1
Vs1+Vs2

ϕc1 + Vs2
Vs1+Vs2

ϕc2.

Figure 10: Volume weighted volumes
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A stable pressure gradient interpolation

Figure 11: Vel. for max. aspect ratio 40
(volume weighted scheme) Figure 12: Eigenvalues of L − Lc
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FSM iterative Poisson equation in collocated meshes

Lp̃n+1
c = Mcun

c −→ un+1
c = un

c − Gc p̃n+1
c , (11)

where Mc = MΓc→sand Gc = Γs→cG = −Ω−1
c ΓT

c→sMT are the collocated
divergence and the collocated gradient. Developing the correction in un

c :

un
c = un−1

c − Gc p̃n
c = un−2

c − Gc p̃n
c − Gc p̃n−1

c = · · · = up
c − Gc

n∑
i=1

p̃i
c (12)

So, the acumulated pressure at n iteration is:

pn
c =

n∑
i=1

p̃i
c (13)

Introducing all this in (7) we obtain:

Lpn+1
c = MΓc→sup

c + (L − Lc)pn
c . (14)
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A stable pressure gradient interpolation

In order to obtain stable solutions, we require the eigenvalues of L − Lc to be
negative.
This can be achieved by using the volume weighted scheme:

Πc→s = ∆−1
s ∆T

sc , (15)

where ∆s ∈ Rm×m is a diagonal matrix containing the projected distances
between two adjacent control volumes, and ∆sc ∈ Rm×n is a matrix
containing the projected distances between an adjacent cell node and its
corresponding face.
It is relatively easy to prove it for cartesian meshes and their stretchings, but
it is not easy to prove for a general triangular mesh.

This problem was widely adressed in: D. Santos, J. Muela, N. Valle, F.X. Trias, On the
Interpolation Problem for the Poisson Equation on Collocated Meshes. 14th WCCM-
ECCOMAS Congress 2020, DOI: 10.23967/wccm-eccomas.2020.257.
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Invariance of definiteness

Motivation: It is easy to prove that a Cartesian mesh meet the previous criteria,
but it is not easy to prove it for rotated Cartesian meshes.

Result 4
The definiteness of L − Lc is invariant under rotations of the mesh.

The face-normal vectors are contained in the matrix N.
A generalized rotation matrix R can be constructed in order to change
properly the matrix N.
As N is inside Γc→s (which is inside Lc), changing the basis will lead us to a
new volumetric interpolator Γnew

c→s .

D. Santos, F. X. Trias, G. Colomer, A. Oliva An energy-preserving unconditionally stable fractional step method on collocated grids
05-09 June 2022, ECCOMAS 2022, Oslo, Norway

20 / 25



5. Air-filled differentially heated cavity for extremely
distorted unstructured meshes

In order to check the stability of the method, some tests have been carried out with
very coarse and very bad quality meshes. Here, a differentially heated cavity test is
presented:

Air-filled (Pr = 0.71).
Aspect ratio 2.
Rayleigh number (based on the cavity height) of 106.

The symmetries of the operators have been respected and a volume weighted in-
terpolator was used to interpolate the pressure gradient.

Remark: Using a mid point scheme will blow up the simulation at the beginning.
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Air-filled differentially heated cavity for extremely distorted
unstructured meshes

Figure 13: Mesh used to
run the case.
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Air-filled differentially heated cavity for extremely distorted
unstructured meshes.

Figure 14: Pressure
distribution.

Figure 15: Temperature
distribution.
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Air-filled differentially heated cavity for extremely distorted
unstructured meshes.

Figure 16: Velocity
distribution in x-direction.

Figure 17: Velocity
distribution in y-direction.
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6. Conclusions

An energy-preserving unconditionally stable fractional step method on
collocated grids has been presented.
There are mathematical reasons beyond physical ones in order to preserve the
underlying symmetries of the differential operators.
The appearance of unphysical velocities is a common problem found in highly
distorted meshes, and it commes from the interpolation of the pressure
gradient in the velocity correction.
The volume weighted scheme solves this problem for Cartesian meshes.
For unstructured triangular meshes, it seems that it can be also stable. At
least, it is much more stable than a mid-point interpolation.
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