Test case description	Numerical methods 00000	Results 000000	Conclusions 0000

A CFD-based multi-fidelity surrogate model for prediction of flow parameters in a ventilated room

N. Morozova¹, F.X. Trias¹, V. Vanovskiy², C. Oliet¹ and E. Burnaev²

 Heat and Mass Transfer Technological Centre (CTTC), Universitat Politècnica de Catalunya (UPC)
 I was asked to remove this affiliation

The 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress 2022 5--9 June 2022, Oslo, Norway

Test case description	Numerical methods 00000	Results 000000	Conclusions 0000

Outline

1 Introduction

- 2 Test case description
- **3** Numerical methods

Introduction	Test case description	Numerical methods	Results	Conclusions
●○		00000	000000	0000

- Modern heating ventilation and air conditioning (HVAC) systems are required to maintain a trade-off between maximizing human thermal comfort and minimizing energy consumption in buildings.
- The air distribution in buildings is usually evaluated either by simplified reduced-order models or by CFD.
- Simplified models provide very rapid predictions but offer limited information due to assumptions required.
- CFD simulations are computationally too expensive.

Introduction ●○	Test case description	Numerical methods 00000	Results 000000	Conclusions 0000

- Modern heating ventilation and air conditioning (HVAC) systems are required to maintain a trade-off between maximizing human thermal comfort and minimizing energy consumption in buildings.
- The air distribution in buildings is usually evaluated either by simplified reduced-order models or by CFD.
- Simplified models provide very rapid predictions but offer limited information due to assumptions required.
- CFD simulations are computationally too expensive.

Introduction ●○	Test case description	Numerical methods 00000	Results 000000	Conclusions 0000

- Modern heating ventilation and air conditioning (HVAC) systems are required to maintain a trade-off between maximizing human thermal comfort and minimizing energy consumption in buildings.
- The air distribution in buildings is usually evaluated either by simplified reduced-order models or by CFD.
- Simplified models provide very rapid predictions but offer limited information due to assumptions required.
- CFD simulations are computationally too expensive.

Introduction ●○	Test case description	Numerical methods 00000	Results 000000	Conclusions 0000

- Modern heating ventilation and air conditioning (HVAC) systems are required to maintain a trade-off between maximizing human thermal comfort and minimizing energy consumption in buildings.
- The air distribution in buildings is usually evaluated either by simplified reduced-order models or by CFD.
- Simplified models provide very rapid predictions but offer limited information due to assumptions required.
- CFD simulations are computationally too expensive.

Introduction 0•	Test case description 000	Numerical methods 00000	Results 000000	Conclusions 0000
Introduction	1			

Objectives of the study

- Explore the capabilities of the surrogate modeling as a cheaper alternative to CFD for indoor environmental applications.
- 2 Reduce the computational cost of the dataset generation by implementing multi-fidelity approach.

Test case description		Conclusions
000		

Physical problem

Three-dimensional mixed convection in a ventilated cavity

- 3D ventilated room filled with air, where the floor is heated, side walls are cold, front and rear walls are periodic. The inlet flow is cold.
- Experimental parameters:
 - **1** Cavity width aspect ratio A_W ;
 - **2** Froude number $Fr = U_{in}/U_{buo}$;
 - 3 Rayleigh number $Ra_H = g\beta\Delta TH^3/(\nu\alpha).$

Test case description ○●○	Numerical methods	Results 000000	Conclusions 0000

Problem description

Configuration of the experiments

Experimental parameters

$$\begin{array}{ll} A_w & 0.25, 0.50, 1.00, 2.00, 4.00 \\ Ra_H & 1.5 \times 10^8, 6.0 \times 10^8, 2.4 \times 10^9, 9.6 \times 10^9 \\ Fr & 0.15, 0.20, 0.25, ..., 0.55, 0.60, 0.70, ..., 1.50, 1.60 \end{array}$$

CFD simulations

Total number of low-fidelity (LF) simulations - 360Total number of high-fidelity (HF) simulations - 240Total number of simulations - 600

Test case description		Conclusions
000		

Problem description

Input-output parameters Input parameters

- $\bullet A_w$
- **2** $T_1, ..., T_4$
- **3** *V*₁, ..., *V*₄

Output parameters

 Nusselt number on the hot wall - < Nu >

2 Average enstrophy - $<\Omega>$ 1

¹N. Morozova, F. X. Trias, R. Capdevila, E. Schillaci and A. Oliva. A CFD-based surrogate model for predicting flow parameters in a ventilated room using sensor readings. Energy Build, **266**:112146, 2022.

		Numerical methods		Conclusions
00	000	00000	000000	0000

Automatic mesh generation

1
$$\Delta x_{max} = \Delta y_{max} \approx C_r \eta_{Gr\ddot{c}}$$

2 $\Delta y_{min} \approx C_r \frac{h_{in}}{2} Re_{\tau}^{-1}$

$$3 \Delta x_{min} = 4 \Delta y_{min}$$

 γ_x, N_x, γ_y, N_bulk - are found iteratively using the hyperbolic tangent function

$$\mathbf{5} \ \mathbf{N}_{z} = 1.1 D / \Delta y_{max}$$

Grid resolutions

- $C_r = 3$ high-fidelity simulations
- $C_r = 6$ low-fidelity simulations

	Test case description	Numerical methods	Results	Conclusions
	000	0●000	000000	0000
Numeric	al methods			

Surrogate models - 1

• The work is based on the Gaussian process regression (GPR).

• All of the models use an open-source library scikit-learn.

Single-fidelity models

- HF-GPR a model trained only high-fidelity (HF) data;
- LF-GPR a model trained only on low-fidelity (LF) data.
- **HFLF-GPR** a model trained on a mix of LF and HF data without distinguishing the data fidelity.

	Test case description	Numerical methods	Results	Conclusions
	000	0●000	000000	0000
Numerica	al methods			

Surrogate models - 1

- The work is based on the Gaussian process regression (GPR).
- All of the models use an open-source library scikit-learn.

Single-fidelity models

- HF-GPR a model trained only high-fidelity (HF) data;
- LF-GPR a model trained only on low-fidelity (LF) data.
- **HFLF-GPR** a model trained on a mix of LF and HF data without distinguishing the data fidelity.

	Test case description	Numerical methods	Results	Conclusions
	000	0●000	000000	0000
Numerica	al methods			

Surrogate models - 1

- The work is based on the Gaussian process regression (GPR).
- All of the models use an open-source library scikit-learn.

Single-fidelity models

- HF-GPR a model trained only high-fidelity (HF) data;
- LF-GPR a model trained only on low-fidelity (LF) data.
- **HFLF-GPR** a model trained on a mix of LF and HF data without distinguishing the data fidelity.

Test case description	Numerical methods	Conclusions
	00000	

Surrogate models - 2

GPR with linear correction (LCGPR)

- Train a single-fidelity model on LF data and test it on HF data M_l(X_l, y_l) = ỹ_h.
- Estimate an error (Δy_h) between the test results and the actual high-fidelity data and train a linear regression model ΔM(X_h, Δy_h) to predict this error.
- **3** Correct the predictions of low-fidelity surrogate model for the the step one $M_l(\mathbf{X}_h)$ using the error correction model from the step two.

Introduction	Test case description	Numerical methods	Results	Conclusions
00			000000	0000

Surrogate models - 2

GPR with linear correction (LCGPR)

- Train a single-fidelity model on LF data and test it on HF data M_l(X_l, y_l) = ỹ_h.
- 2 Estimate an error (Δy_h) between the test results and the actual high-fidelity data and train a linear regression model ΔM(X_h, Δy_h) to predict this error.
- 3 Correct the predictions of low-fidelity surrogate model for the the step one $M_l(\mathbf{X}_h)$ using the error correction model from the step two.

Introduction	Test case description	Numerical methods	Results	Conclusions
00			000000	0000

Surrogate models - 2

GPR with linear correction (LCGPR)

- Train a single-fidelity model on LF data and test it on HF data M_l(X_l, y_l) = ỹ_h.
- 2 Estimate an error (Δy_h) between the test results and the actual high-fidelity data and train a linear regression model ΔM(X_h, Δy_h) to predict this error.
- **3** Correct the predictions of low-fidelity surrogate model for the the step one $M_l(\mathbf{X}_h)$ using the error correction model from the step two.

Test case description	Numerical methods	Results 000000	Conclusions 0000

Surrogate models - 3

Multi-fidelity GPR (MFGPR) or co-kriging

It estimates for a poorly sampled variable $\mathbf{y}_{l}(\mathbf{x})$ with the help of a well-sampled variable $\mathbf{y}_{h}(\mathbf{x})$:

$$\mathbf{y}_l(\mathbf{x}) = f_l(\mathbf{x}) + \epsilon_l$$

 $\mathbf{y}_h(\mathbf{x}) = \rho y_l(\mathbf{x}) + y_d(\mathbf{x})$

Test case description	Numerical methods	Results 000000	Conclusions 0000

Numerical methods Metrics

Mean relative prediction error (MRE)

$$MRE(\phi) = \frac{1}{N} \sum_{i=1}^{N} \frac{|\phi_{CFD} - \phi_{SM}|}{|\phi_{CFD}|}$$

We assume that less than $10\%\ MRE$ is acceptable for this model.

Test case description	Numerical methods	Results ●00000	Conclusions 0000

Results

Single-fidelity models

Average computational cost

2700 core-hours - a high-fidelity simulation 285 core-hours - a low-fidelity simulation

Test case description	Numerical methods 00000	Results 0●0000	Conclusions 0000

Test case description	Numerical methods 00000	Results 0●0000	Conclusions 0000

Test case description	Numerical methods 00000	Results 0●0000	Conclusions 0000

Test case description	Numerical methods 00000	Results 0●0000	Conclusions 0000

Test case description	Numerical methods 00000	Results 00●000	Conclusions 0000

Test case description	Numerical methods 00000	Results 00●000	Conclusions 0000

Test case description	Numerical methods 00000	Results 00●000	Conclusions 0000

Test case description	Numerical methods 00000	Results 00●000	Conclusions 0000

Test case description	Numerical methods	Results	Conclusions
000	00000	000●00	0000

Test case description	Numerical methods 00000	Results 000●00	Conclusions

Test case description	Numerical methods 00000	Results 000●00	Conclusions 0000

Test case description	Numerical methods 00000	Results 000●00	Conclusions 0000

Test case description	Results	Conclusions
	000000	

Results

MRE of the average enstrophy $<\!\Omega\!>$ for different number of HF training samples using different surrogate models

Test case description	Numerical methods	Results 00000●	Conclusions 0000

Results Summary of the obtained results

Model	Samples		Kh	MRE		
Model	HF	LF	total		< <i>Nu</i> >	$<\!\Omega\!>$
HF GPR	130	-	130	351	0.046 ± 0.02	0.046 ± 0.03
LF GPR	-	350	350	100	$\textbf{0.193} \pm \textbf{0.03}$	$\textbf{0.246} \pm \textbf{0.07}$
HFLF GPR	120	40	160	335	$\textbf{0.042} \pm \textbf{0.06}$	$\textbf{0.093} \pm \textbf{0.05}$
LC GPR	75	225	240	285	$\textbf{0.112} \pm \textbf{0.06}$	0.100 ± 0.05
MF GPR	40	350	380	208	$\textbf{0.092} \pm \textbf{0.04}$	$\textbf{0.093} \pm \textbf{0.05}$

	Test case description	Numerical methods 00000	Results 000000	Conclusions ●000
Conclusio	ons			
Conclusions -	1			

- The developed surrogate model provides almost instant accurate predictions using an ordinary office computer.
- The input data of the developed model is structured to take the values of temperature and velocity in the locations, which could be replaced by sensor readings.
- The main computational burden of the surrogate model is the cost of its development because, at this step, a comprehensive set of HF data is required.
- We spent 650Kh on 240 HF CFD simulations and 100Kh on 350 LF simulations.

	Test case description	Numerical methods	Results 000000	Conclusions ●000
Conclusio	ons			

Conclusions - 1

- The developed surrogate model provides almost instant accurate predictions using an ordinary office computer.
- The input data of the developed model is structured to take the values of temperature and velocity in the locations, which could be replaced by sensor readings.
- The main computational burden of the surrogate model is the cost of its development because, at this step, a comprehensive set of HF data is required.
- We spent 650Kh on 240 HF CFD simulations and 100Kh on 350 LF simulations.

	Test case description	Numerical methods 00000	Results 000000	Conclusions ●000
Conclusio	ons			

Conclusions - 1

- The developed surrogate model provides almost instant accurate predictions using an ordinary office computer.
- The input data of the developed model is structured to take the values of temperature and velocity in the locations, which could be replaced by sensor readings.
- The main computational burden of the surrogate model is the cost of its development because, at this step, a comprehensive set of HF data is required.
- We spent 650Kh on 240 HF CFD simulations and 100Kh on 350 LF simulations.

	Test case description	Numerical methods 00000	Results 000000	Conclusions ●000
Conclusio	ons			
- · ·				

Conclusions - 1

- The developed surrogate model provides almost instant accurate predictions using an ordinary office computer.
- The input data of the developed model is structured to take the values of temperature and velocity in the locations, which could be replaced by sensor readings.
- The main computational burden of the surrogate model is the cost of its development because, at this step, a comprehensive set of HF data is required.
- We spent 650Kh on 240 HF CFD simulations and 100Kh on 350 LF simulations.

	Test case description	Numerical methods 00000	Results 000000	Conclusions 0●00
~ · ·				
Conclusio	ons			
Conclusions -	2			

- The use of multi-fidelity models reduced the computational cost considerably.
- Even a simple HFLF GPR model is less computationally expensive than the baseline HF GPR model.
- More sophisticated multi-fidelity models like LC GPR and MF GRP required at least 1.5 times less computational resources than the HF GPR model.
- The MF GRP has shown the best trade-off between computational cost and accuracy among studied multi-fidelity models.

Centre Tecnològic de Transferència de Calor Universitat Politècnica de Catalunya

	Test case description	Numerical methods 00000	Results 000000	Conclusions 0000
Conclusio	ons			
Conclusions -	2			

- The use of multi-fidelity models reduced the computational cost considerably.
- Even a simple HFLF GPR model is less computationally expensive than the baseline HF GPR model.
- More sophisticated multi-fidelity models like LC GPR and MF GRP required at least 1.5 times less computational resources than the HF GPR model.
- The MF GRP has shown the best trade-off between computational cost and accuracy among studied multi-fidelity models.

Universitat Politècnica de Catalunya

	Test case description	Numerical methods 00000	Results 000000	Conclusions 0●00
~ · ·				
Conclusio	ons			
Conclusions -	2			

- The use of multi-fidelity models reduced the computational cost considerably.
- Even a simple HFLF GPR model is less computationally expensive than the baseline HF GPR model.
- More sophisticated multi-fidelity models like LC GPR and MF GRP required at least 1.5 times less computational resources than the HF GPR model.
- The MF GRP has shown the best trade-off between computational cost and accuracy among studied multi-fidelity models.

Centre Tecnològic de Transferència de Calo Universitat Politècnica de Catalunya

	Test case description	Numerical methods 00000	Results 000000	Conclusions 0●00
~ · ·				
Conclusio	ons			
Conclusions -	2			

- The use of multi-fidelity models reduced the computational cost considerably.
- Even a simple HFLF GPR model is less computationally expensive than the baseline HF GPR model.
- More sophisticated multi-fidelity models like LC GPR and MF GRP required at least 1.5 times less computational resources than the HF GPR model.
- The MF GRP has shown the best trade-off between computational cost and accuracy among studied multi-fidelity models.

	Test case description	Numerical methods 00000	Results 000000	Conclusions
Conclusio	ons			
Future work				

- Study the generalization properties of the developed methodology.
- Adapt the existing methodology to a direct prediction of comfort parameters, such as predicted mean vote.
- A more broad study on a proper choice of data fidelity is required.
- The model could be further analyzed in terms of extrapolation capabilities.

Test case description	Numerical methods	Results 000000	Conclusions 000●

THANK YOU FOR YOUR ATTENTION!

Ready for your questions!

