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Introduction
Simulations of indoor environment. State of the art

• Modern heating ventilation and air conditioning (HVAC)
systems are required to maintain a trade-off between
maximizing human thermal comfort and minimizing energy
consumption in buildings.

• The air distribution in buildings is usually evaluated either by
simplified reduced-order models or by CFD.

• Simplified models provide very rapid predictions but offer
limited information due to assumptions required.

• CFD simulations are computationally too expensive.
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Introduction
Objectives of the study

1 Explore the capabilities of the surrogate modeling as a cheaper
alternative to CFD for indoor environmental applications.

2 Reduce the computational cost of the dataset generation by
implementing multi-fidelity approach.
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Physical problem
Three-dimensional mixed convection in a ventilated cavity

• 3D ventilated room filled with air,
where the floor is heated, side walls
are cold, front and rear walls are
periodic. The inlet flow is cold.

• Experimental parameters:

1 Cavity width aspect ratio AW ;

2 Froude number Fr = Uin/Ubuo ;

3 Rayleigh number
RaH = gβ∆TH3/(να).
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Problem description
Configuration of the experiments

Experimental parameters

Aw 0.25, 0.50, 1.00, 2.00, 4.00

RaH 1.5× 108, 6.0× 108, 2.4× 109, 9.6× 109

Fr 0.15, 0.20, 0.25, ..., 0.55, 0.60, 0.70, ..., 1.50, 1.60

CFD simulations
Total number of low-fidelity (LF) simulations - 360
Total number of high-fidelity (HF) simulations - 240
Total number of simulations - 600

6 / 22



Introduction Test case description Numerical methods Results Conclusions

Problem description
Input-output parameters
Input parameters

1 Aw

2 T1, ...,T4

3 V1, ...,V4

Output parameters

1 Nusselt number on the hot
wall - <Nu>

2 Average enstrophy - <Ω>
1

1N. Morozova, F. X. Trias, R. Capdevila, E. Schillaci and A. Oliva.
A CFD-based surrogate model for predicting flow parameters in a
ventilated room using sensor readings. Energy Build, 266:112146, 2022.

7 / 22



Introduction Test case description Numerical methods Results Conclusions

Numerical methods
CFD simulations

Automatic mesh generation

1 ∆xmax = ∆ymax ≈ CrηGrö

2 ∆ymin ≈ Cr
hin
2 Re−1

τ

3 ∆xmin = 4∆ymin

4 γx ,Nx , γy ,Nbulk - are found
iteratively using the
hyperbolic tangent function

5 Nz = 1.1D/∆ymax

Grid resolutions
• Cr = 3 - high-fidelity simulations

• Cr = 6 - low-fidelity simulations
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Numerical methods
Surrogate models - 1

• The work is based on the Gaussian process regression (GPR).

• All of the models use an open-source library scikit-learn.

Single-fidelity models

• HF-GPR - a model trained only high-fidelity (HF) data;

• LF-GPR - a model trained only on low-fidelity (LF) data.

• HFLF-GPR - a model trained on a mix of LF and HF data
without distinguishing the data fidelity.
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Numerical methods
Surrogate models - 2

GPR with linear correction (LCGPR)

1 Train a single-fidelity model on LF data and test it on HF
data - Ml(Xl , yl) = ỹh.

2 Estimate an error (∆yh) between the test results and the
actual high-fidelity data and train a linear regression model
∆M(Xh,∆yh) to predict this error.

3 Correct the predictions of low-fidelity surrogate model for the
the step one - Ml(Xh) using the error correction model from
the step two.
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Numerical methods
Surrogate models - 3

Multi-fidelity GPR (MFGPR) or co-kriging

It estimates for a poorly sampled variable yl(x) with the help of a
well-sampled variable yh(x):

yl(x) = fl(x) + ϵl

yh(x) = ρyl(x) + yd(x)
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Numerical methods
Metrics

Mean relative prediction error (MRE)

MRE (ϕ) =
1

N

∑N

i=1

|ϕCFD − ϕSM |
|ϕCFD |

We assume that less than 10% MRE is acceptable for this model.
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Results
Single-fidelity models

Average computational cost

2700 core-hours - a high-fidelity simulation
285 core-hours - a low-fidelity simulation
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Results
HFLF GPR model
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Results
LC GPR model
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Results
MF GPR model
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Results
MF GPR model
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Results
MF GPR model

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

50 100 200 400

M
R

E
(<

Ω
>

)

Total number of samples in the training dataset

100% HF - HF GPR
50% HF - MF GPR
25% HF - MF GPR

0% HF - LF GPR

0

100

200

300

400

500

600

700

25 50 75 100
C

o
m

p
u
ta

ti
o
n
al

 c
o
st

, 
k
H

HF data share, %

25% HF - LC GPR
25% HF - MF GPR
50% HF - MF GPR

75% HF - LFHF GPR
100% HF - HF GPR

16 / 22



Introduction Test case description Numerical methods Results Conclusions

Results
MF GPR model
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Results
MRE of the average enstrophy <Ω> for different number of HF training samples using
different surrogate models
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Results
Summary of the obtained results

Model
Samples

Kh
MRE

HF LF total <Nu> <Ω>

HF GPR 130 - 130 351 0.046± 0.02 0.046± 0.03

LF GPR - 350 350 100 0.193± 0.03 0.246± 0.07

HFLF GPR 120 40 160 335 0.042± 0.06 0.093± 0.05

LC GPR 75 225 240 285 0.112± 0.06 0.100± 0.05

MF GPR 40 350 380 208 0.092± 0.04 0.093± 0.05
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Conclusions
Conclusions - 1

• The developed surrogate model provides almost instant
accurate predictions using an ordinary office computer.

• The input data of the developed model is structured to take
the values of temperature and velocity in the locations, which
could be replaced by sensor readings.

• The main computational burden of the surrogate model is the
cost of its development because, at this step, a comprehensive
set of HF data is required.

• We spent 650Kh on 240 HF CFD simulations and 100Kh on
350 LF simulations.
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Conclusions
Conclusions - 2

• The use of multi-fidelity models reduced the computational
cost considerably.

• Even a simple HFLF GPR model is less computationally
expensive than the baseline HF GPR model.

• More sophisticated multi-fidelity models like LC GPR and MF
GRP required at least 1.5 times less computational resources
than the HF GPR model.

• The MF GRP has shown the best trade-off between
computational cost and accuracy among studied multi-fidelity
models.
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Conclusions
Future work

• Study the generalization properties of the developed
methodology.

• Adapt the existing methodology to a direct prediction of
comfort parameters, such as predicted mean vote.

• A more broad study on a proper choice of data fidelity is
required.

• The model could be further analyzed in terms of extrapolation
capabilities.
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THANK YOU FOR YOUR ATTENTION!

Ready for your questions!
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