Symmetry-preserving discretisation methods for magnetohydrodynamics

<u>J.A. Hopman</u>, F.X. Trias and J.Rigola Heat and Mass Transfer Technological Center (CTTC) Technical University of Catalonia (UPC), Terrassa, Spain

The 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress 2022 5-9 June 2022, Oslo, Norway

Conclusions

- Symmetry preserving (SyPr) method extended to include magnetohydrodynamic (MHD) flows
 - Accuracy on Cartesian grids
 - Unconditional stability
- New benchmark case designed using a Taylor-Green vortex (TGV)

MHD introduction

Liquid metals in magnetic field

3

MHD challenge

- Balancing high forces
- Thin boundary layers
- Cross products & extra Poisson equation
 - Location of variables

$$\frac{\mathrm{D}\mathbf{u}}{\mathrm{D}t} = \nu \nabla^2 \mathbf{u} - \nabla(\mathbf{p}/\rho) + (\mathbf{J} \times \mathbf{B})/\rho$$
$$\mathbf{J} = \sigma(\mathbf{u} \times \mathbf{B} - \nabla \phi)$$
$$\nabla^2 \phi = \nabla \cdot (\mathbf{u} \times \mathbf{B})$$

History of symmetry-preserving method

Conservative symmetric discretization Collocated unstructured grids Implementation into OpenFoam Extension to MHD

- Verstappen & Veldman (2003)
- Trias *et al.* (2014)
- Komen et al. (2021)

Symmetry-preserving method

Retaining symmetries in continuous operators

- Conserve energy + unconditionally stable
- Midpoint interpolation for convection
- Uncorrected gradient distances
- S \rightarrow C interpolation: $\Gamma_{sc} = \Omega^{-1}\Gamma_{cs}^T\Omega_s$

Discretisation method

Method of Ni et al. 2007

 $\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{n} - \Delta t \Omega^{-1} (C(\mathbf{u}_{f}^{n}) + D) \mathbf{u}_{c}^{n}$ $+\frac{Ha^2}{Rc}\mathbf{J}_c^n\times\mathbf{B}_c^n$ $\mathbf{u}_f^p = \Gamma_{sc} \mathbf{u}_c^p$ $L\widetilde{\mathbf{p}}_{c}^{n+1} = M\mathbf{u}_{f}^{p}$ $\mathbf{u}_f^{n+1} = \mathbf{u}_f^p - \mathbf{G}\widetilde{\mathbf{p}}_c^{n+1}$ $\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - \Gamma_{sc} \mathbf{G} \widetilde{\mathbf{p}}_{c}^{n+1}$ $\mathbf{J}_{c}^{p} = \mathbf{u}_{c}^{n+1} \times \mathbf{B}_{c}^{n+1}$ $\mathbf{J}_f^p = \Gamma_{sc} \, \mathbf{J}_c^p$ $\mathbf{L}\boldsymbol{\varphi}_c^{n+1} = \mathbf{M}\mathbf{u}_f^p$ $\mathbf{J}_{c}^{n+1} = \Gamma_{sc}^{Ni} \left(\mathbf{J}_{f}^{p} - \mathbf{G} \boldsymbol{\varphi}_{c}^{n+1} \right)$

Predict velocity

Interpolate

Pressure Poisson

Correct flux

Update velocity

Predict current density

Interpolate

Electric potential Poisson

Update current density

Ni interpolation (Γ_{sc}^{Ni}):

• Non-consistent: $\Gamma_{sc}^{Ni} \neq \Omega^{-1}\Gamma_{cs}^T\Omega_s$

• Non-conservative: $tr(\Omega_c) \neq tr(\Omega_s)$

Interpolation methods

- 1. Ni: $\frac{1}{[\Omega_c]_{i,i}} \sum_f J_f (\mathbf{r}_f \mathbf{r}_i) s_f$
- 2. Midpoint
- 3. Volumetric

Discretisation method

Method of Ni et al. 2007

 $\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{n} - \Delta t \Omega^{-1} (C(\mathbf{u}_{f}^{n}) + D) \mathbf{u}_{c}^{n}$ $+\frac{Ha^2}{Rc}\mathbf{J}_c^n\times\mathbf{B}_c^n$ $\mathbf{u}_{f}^{p} = \Gamma_{sc} \mathbf{u}_{c}^{p}$ $L\widetilde{\mathbf{p}}_{c}^{n+1} = M\mathbf{u}_{f}^{p}$ Volumetric interpolation $\mathbf{u}_f^{n+1} = \mathbf{u}_f^p - \mathbf{G}\widetilde{\mathbf{p}}_c^{n+1}$ **Predictor fields** $\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - \Gamma_{sc} \mathbf{G} \widetilde{\mathbf{p}}_{c}^{n+1}$ $\mathbf{J}_{c}^{p} = \mathbf{u}_{c}^{n+1} \times \mathbf{B}_{c}^{n+1}$ $\mathbf{J}_f^p = \Gamma_{sc} \, \mathbf{J}_c^p$ $\mathbf{L}\boldsymbol{\varphi}_{c}^{n+1} = \mathbf{M}\mathbf{u}_{f}^{p}$ $\mathbf{J}_{c}^{n+1} = \Gamma_{sc}^{Ni} \left(\mathbf{J}_{f}^{p} - \mathbf{G} \boldsymbol{\varphi}_{c}^{n+1} \right)$

Symmetry preserving method $\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{n} - \Delta t \Omega^{-1} (C(\mathbf{u}_{f}^{n}) + D) \mathbf{u}_{c}^{n}$ $+\frac{Ha^2}{Rc}\mathbf{J}_c^n\times\mathbf{B}_c^n-\Gamma_{sc}^{Vol}\mathbf{G}\widetilde{\mathbf{p}}_c^p$ $\mathbf{u}_f^p = \Gamma_{sc}^{Vol} \mathbf{u}_c^p$ $\mathrm{L}\widetilde{\mathbf{p}}'_{c} = \mathrm{M}\mathbf{u}_{f}^{p}$ $\mathbf{u}_f^{n+1} = \mathbf{u}_f^p - \mathbf{G}\widetilde{\mathbf{p}}'_c$ $\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - \Gamma_{sc}^{Vol} \mathbf{G} \widetilde{\mathbf{p}}'_{c}$ $\widetilde{\mathbf{p}}_{c}^{n+1} = \widetilde{\mathbf{p}}_{c}^{p} + \widetilde{\mathbf{p}}_{c}^{\prime}$ $\mathbf{J}_{c}^{p} = \mathbf{u}_{c}^{n+1} \times \mathbf{B}_{c}^{n+1} - \Gamma_{sc}^{Vol} \mathbf{G} \boldsymbol{\varphi}_{c}^{p}$ $\mathbf{J}_f^p = \Gamma_{sc}^{Vol} \mathbf{J}_c^p$ $\mathrm{L}\widetilde{\mathbf{\phi}}'_{c} = \mathrm{M}\mathbf{u}_{f}^{p}$ $\mathbf{J}_{c}^{n+1} = \Gamma_{sc}^{Vol} \left(\mathbf{J}_{f}^{p} - \mathbf{G} \widetilde{\boldsymbol{\varphi}}'_{c} \right)$ $\boldsymbol{\varphi}_{c}^{n+1} = \boldsymbol{\varphi}_{c}^{p} + \widetilde{\boldsymbol{\varphi}}'_{c}$

Taylor-Green vortex

Taylor-Green vortex – Energy budgets

 $\mathbf{u} \cdot \left(\frac{\mathrm{D}\mathbf{u}}{\mathrm{D}\mathrm{t}} = \nu \nabla^2 \mathbf{u} - \nabla(\mathbf{p}/\rho) + \frac{\mathbf{J} \times \mathbf{B}}{\rho}\right)$

Taylor-Green vortex – grid distortion

Grid (65x65): Cartesian \rightarrow distorted

Hunt's Case

 U_{mean} = 1.0 Ha = 30 Grid (65x65): Cartesian → distorted

Hunt's Case – Results

Unconditional stability!

Conclusions

- Symmetry preserving method extended to include MHD flows
 - Accuracy on Cartesian grids
 - Unconditional stability
- New benchmark case designed using a Taylor-Green vortex

Thank you for your attention

Any questions?