Investigation of length scale definition influence in LES models

E. Di Lavore¹ J. Ruano¹ A. Oliva^{1,2} F.X. Trias¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia https://www.cttc.upc.edu/

> ²Termo Fluids SL, http://www.termofluids.com/

> > 2024/06/03

The work

Results 00000000000 Conclusions 000

Index

Context of the work \bullet

The work 000 Results 000000000000 Conclusions 000

Context of the work

Context	of	the	work	
0000				

The work 000

Results 000000000000 Conclusions 000

Large Eddy Simulation

• Filtered Navier-Stokes for incompressible flows:

$$\partial_t \bar{u} + (\bar{u} \cdot \nabla) \bar{u} = \nabla^2 \bar{u} - \nabla \bar{p} - \nabla \cdot \tau(\bar{u}) \qquad \nabla \cdot \bar{u} = 0$$

• Closure problem \Rightarrow SGS eddy viscosity

$$\tau(\bar{u}) = \overline{u_i u_j} - \bar{u_i} \bar{u_j} \approx -2\nu_e D_m(\bar{u})$$

where

$$\nu_e = (C_m \underbrace{\Delta}_{Def?})^2 \mid \bar{D_m} \mid$$

Core of LES approach:

- "Scale invariance means that some features of the flow remain the same in different scales of motion" Meneveau & Katz (2000)
- "The smallest resolved-scale motions provide info that can be used to model the largest SGS motions" -Germano & alia (1991)

Context of the work ○○●○	The work 000	Results 0000000000
Scope of this study:		

- Model's differential operator $D_m \Rightarrow$ Smagorinsky (1963), WALE (1999), Vreman (2004), σ -model, S3PQR¹, vortex-stretching-based model², ...
- Model's constant $C_m \Rightarrow$ Kolmogorov constant, Germano's dynamic model (1991) , ...
- And Δ ?

The problem that arises in highly anisotropic or unstructured grids

• Assessing the influence of the characteristic length-scale definition on the performance of LES models in highly anisotropic structured grids.

¹F.X.Trias, D.Folch, A.Gorobets, A.Oliva. **Physics of Fluids**, 27: 065103 (2015) ²M.H.Silvis, R.A.Remmerswaal, R.Verstappen, **Physics of Fluids**, 29: 015105 (2017)

Context of the work $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

The work 000 Results 00000000000 Conclusions 000

LES Deltas

• The first 3 depend only on the mesh, the remaining are function also of $ar{u}$

$$\begin{cases} \Delta_V = (V)^{1/3} & {}^1 \\ \Delta_{max} = max(dx_i) & {}^2 \downarrow \text{ from DES community} \\ \Delta_{min} = min(dx_i) & (1) \\ \Delta_{\omega} = \sqrt{N_x^2 dy \, dz + N_y^2 dx \, dz + N_z^2 dx \, dy} & {}^3 \\ \Delta_{SLA}^4, \Delta_{lsq}^5 \dots \end{cases}$$

• OpenFOAM library: implementation of DES Deltas definitions for LES simulations

https://github.com/jruanoperez/TurbulenceModels

¹Deardorff et al. (1970)
²Spalart et al. (1997)
³Chauvet, Deck, Jacquin (2007)
⁴Shur, Spalart, Strelets, Travin (2015)
⁵F. X. Trias, A. Gorobets, M. H. Silvis, R. W. C. P. Verstappen, and A. Oliva, Physics of Fluids 29, 115109 (2017)

The work ●○○ Results 000000000000 Conclusions 000

The work

HIT and PPC

The work ○●O Results 00000000000 Conclusions 000

Homogeneous Isotropic Turbulence decay

- Mesh 64x64x N_z with $N_z \in (64, 128, 256, 512, 1024)$
- Reference: CBC ¹ Re= 34000
- Model: Smagorisnky
- backward 2^{nd} order , dt = 1e 3
- $L_{box} = 0.09 \cdot 2\pi$
- Each case have been run with the following characteristic lenght-scale definitions: Δ_{Vol} , Δ_{Max} , Δ_{min} , Δ_{ω} , Δ_{lsq}

¹Comte-Bellot, Corrsin: wind tunnel (1971)

The work ○O● Results 00000000000 Conclusions 000

Periodic Plane Channel

- Mesh $32 \times 32 \times N_z$ and $N_x \times 32 \times 32$ with $N_x, N_z \in (64, 128, 256, 512, 1024)$
- Reference: KMM ² $\operatorname{Re}_{\tau} = 180$
- Model: WALE
- Courant-adaptive dt with $C_{max} = 0.3$
- $L_{chan} = (20 \cdot \pi, 2, \pi)$
- over-dissipation problem: time integration with backward $2^{nd} {\rm order}$ \Rightarrow To be solved with Symmetry Preserving RK3 3 :

https://github.com/janneshopman/RKSymFoam

²Kim, Moin, Moser: DNS (1987)

³E.M.J. Komen, J.A. Hopman, E.M.A. Frederix, F.X. Trias, R.W.C.P. Verstappen, Computers & Fluids, 225: 104979, 2021

The work 000 Conclusions 000

Results

The work

Results 0000000000 Conclusions

HIT Energy density spectra: Δ_{vol} , isotropic mesh

HIT Energy density spectra: comparison Δ_{vol} and without model

HIT Energy density spectra: effect of anisotropy with Δ_{vol}

Conclusions 000

HIT Energy density spectra: different Δ in anisotropic mesh

Aspect Ratio = 8

Context	of	the	work
0000			

The work 000 Results

Conclusions 000

Channel Average velocities: different Δ , isotropic mesh

Context of the work	The work	Results
0000	000	0000000000
Average velocities: Δ_{va}	$_{bl}$, different meshes	

y+

Conclusions 000

Context of t 0000	he work	The work 000			Results 000000000000		
_		 			-		

Conclusions 000

Reynolds stresses: different Δ , isotropic mesh

The work

Results

Conclusions 000

Reynolds stresses: different meshes, Δ_{lsq}

Conclusions 000

Channel average velocity with in-house Energy-Preserving code

Context	of	the	work
0000			

The work

Results

Conclusions 000

Channel Reynolds stress Trace

The work 000 Results 000000000000 Conclusions ●○○

Conclusions

The work 000 Results 000000000000 Conclusions ○●O

Conclusions

 \bullet As expected, Δ_{max} and Δ_{min} are bounding the behavior of all other models

HIT:

- $\bullet\,$ High anisotropies tend to deactivate the model when Δ_{vol} is used
- Instead, Δ_{max} is not affected from refinement, hence showing constant model behavior at successive refinements
- Δ_{ω} and Δ_{lsq} show to be not sensitive to anisotropies

Channel:

- Due to time integration scheme, OpenFOAM doesn't fully develop turbulence, hence presenting a much higher average velocity in the channel's bulk volume
- This effect was compensated by model deactivation due to mesh anisotropy
- This issue is expected to be solved by introducing a RK3 integration

The work 000 Results 00000000000 Conclusions ○O●

Thanks for your attention!

Heat and Mass Transfer Technological Center Technical University of Catalunya

