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1. Definition of basic collocated operators

Let us suppose we have n control volumes and m faces.

Finite volume discretization of incompressible NS equations on an

arbitrary collocated mesh

du,

th

+ C(us)uc = —Du. — QG.p,, (1)
Mug = 0. (2)

o p.=(p1,.y p,,)T € R" s the cell-centered pressure.

o uc. = (ug,up,u3)” € R¥ | where u; = ((uj)1, .., (u;)n) T are the vectors
containing the velocity components corresponding to the x;—spatial direction.

o us = ((us)1, .-, (us)m)™ € R™ is the staggered velocity.

@ The velocities are related via the interpolator from cells to faces
rc—>s S RmXSn — us = rc—>suc~
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Definition of basic collocated operators

The (3D) interpolator from cells to faces can be constructed as follows:
Mes = NI, 3)

where
o N = (NsNs,Ns,) e R™3™  where Ns x, Nsy, N5, € R™™ are diagonal
matrices containing the x; spatial component of the face normal vectors.

0 MN=k@M._s e R3m*3n
@ MM._s € R™*" is the scalar cell-to-face interpolator.
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Definition of basic collocated operators

o is a diagonal matrix with the cell-centered volumes
— =hL®Q..

o| C.(us) € R™" is the cell-centered convective operator for a discrete scalar

ield = u;) = 5 ® C(us).
o is the cell-centered diffusive operator for a discrete scalar field
— D=hk®D..
Finally,

o G. € R3™" represents the discrete collocated gradient.

o M e R™™ s the face-to-cell discrete divergence operator.
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Definition of basic collocated operators

o Q. € R™" s a diagonal matrix with the cell-centered volumes
— Q=5hLK®Q..
o C.(us) € R™" s the cell-centered convective operator for a discrete scalar
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Mimicking continuous properties

Mimicking Hilbert adjointness in L? inner product —
G=-Q;'MT,

Mimicking continuous Laplacian —
L=MG=—-MQ;IMT,

Le=M.Ge= Ml Q' T, .mM",

Metric-consistency of L2 inner product —
Mene=Q7,.Q (4)

c—>s=tSs:
where G is the center-to-face staggered gradient, L is the Laplacian operator, L. is
the collocated-Laplacian operator and ['s_,. is the face-to-cell interpolator.

For more information about Symmetry-Preserving discretization consult: F.X. Trias, O.
Lehmkuhl, A. Oliva, C.D. Perez-Segarra, and R.W.C.P. Verstappen. Symmetry-preserving
discretization of Navier-Stokes equations on collocated unstructured meshes. Journal of
Computational Physics, 258:246-267, 2014.
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Reduction of 2-forms and divergence operator

@ Operator Reduction R — FV discretization.

@ 2-form uf can be "understood” as a vector at the faces.

Rus = /Uf - hdS = uS5¢ (5)
f

Divergence operator:

R(V~u)z/V-udV:/ up - AdS =) usSp —
v v p

— M= TCQSSf — Mug = 6RUf (6)

Daniel Santos 8/19



Skew-Symmetry of the convective operator

The convective operator in a FV context is constructed as:

c—s—C

C(us)u. = /\ﬂ(diag(us)l'lmid uc) @)

From a DEC point of view, it is possible to decompose the continuous convective
for 3-forms as follows:

Conv(®) = digpp = d * (x¢ A u”) (8)

Assuming a local stencil, the construction of the discrete wedge product between
0-forms and 1-forms induces the coefficient 1/2 —

It is not an interpolation, but the construction of the wedge.

Finally, this wedge combined with M = T._,s5¢ is automatically skew-symmetric.

Daniel Santos 9/19



2. Conservation of global kinetic energy

Global kinetic energy equation

d||'~'6||2__ T T T T
0 = u_ (C(us) + C" (us))uc —u. (D+ D" )u,

—u/QG.p,. —p!/ G QT u.. 9)

In the absence of diffusion, that is, D = 0, the global kinetic energy is conserved if:

e C(us) = —CT(uy), i.e, the convective operator should be skew-symmetric.
o (—QG.)T = Ml._,, because Mug = 0..

Daniel Santos 10/19



Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective

operator

dlfucl? _

o —u/(D+D"u, —ulQGp, —pl G QTu,.

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:

o (—QG.)" = MI'._,, because Mug = 0. (But this relation is exact ONLY in
staggered configurations!).

In collocated framework, we either solve:

Mus =0 — Lp. = MT._,su? — Kinetic Energy Error (10)
Mcou, =0 — Lcpe = MIT ., su? — Checkerboard (11)

Daniel Santos 11/19



Conservation of global kinetic energy

Global kinetic energy equation with skew-symmetric convective

operator

dlfucl?

dt —u/(D+D")uc —ulQ6ep, —p! G/ Q" u.

In absence of diffusion, that is D = 0, the global kinetic energy is conserved if:

o (-QG.)" = Ml because Mug = 0. (But this relation is exact ONLY in
staggered configurations!).

In collocated framework and explicit time integration, the (artificial) kinetic energy
added is given by:
—plGIQTu. =pl (L - L)p.At (12)
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Volume-weighted interpolator

@ The volume-weighted interpolator can be constructed as:
—1IAT
MNess = A A, (13)
where Ag € R™*™ s a diagonal matrix containing the projected distances
between two adjacent control volumes, and A, € R™*" contains the
projected distances between an adjacent cell node and its corresponding face.

% V.
=L ¢c1 + 2L ¢c2-

Volume-weighted interpolation: = —bL L
g P ¢f Vif+Vor Vi +Vo s

Figure 1: Volume-weighted volumes
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Volume-weighted interpolator

dir

: : P _ , do,f
Volume-weighted interpolation: ¢r = d1,f+d2,,¢cl + dl,f+d2,f¢c2'

Momentum is conserved when interpolated by the volume-weighted:
(UCa ]-C)Q = (USa 15)95 —
ul v+ u? v, = (arul + au)Ar = (diul + dou?)Ar —
- - d1 d>
1 2 1 2

u Vi +u Vs = u, + uy) V.

' =G G g™

And the staggered metric is induced automatically to the faces!

Figure 2: Volume-weighted volumes
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2]
Vi= Y Vien?e, Yhe{l,..,n}, i€{xy,z} (14)
fEF(k)
> Vignignir <0, Vhke{1,...n}, ije{xy z}, i#j, (15
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Conservation of global kinetic energy

What is the theorem saying:

@ Under these assumptions, the method is unconditionally stable.
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Conservation of global kinetic energy

What is the theorem saying:
@ Under these assumptions, the method is unconditionally stable.
@ The volume-weighted interpolator is strictly needed for the result.
@ The theorem holds for both explicit and implicit time integration.
What is the theorem not saying:

@ These are the unique assumptions in order to have stable simulations.

Hexahedral (cuboid) meshes always give stable results when using the
volume-weighted interpolator.

Triangular meshes give stable results when using the volume-weighted interpolator
if the node is placed at the circumcenter.
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Numerical robustness

Figure 3: Highly distorted mesh in a Re; = 395 channel flow. Max aspect ratio is 250.

U Magnitude
0.0e+00 0.040.060.08 0.1 0.120.140.16  2.0e-01
I .

Figure 4: Velocity converged with the volume-weighted interpolator.
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e Unconditionally stable.

e Easily portable (to other codes, platforms...) — Only five operators are
needed. Qc, Qs, N, M5, M.

o The convective term skew-symmetry is induced by the Reduction and the
wedge product.

o The staggered metric is induced to the faces by the interpolator.

@ The volume-weighted interpolator was shown to be unconditionally stable even
for high-distorted meshes when the geometrical conditions are satisfied.

@ Triangular meshes need to place the node at the circumcenter.
Ongoing work
@ Find the conditions for tetrahedral meshes in order to satisfy the geometrical
conditions of the theorem.
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