Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	00000000000000	

ON THE EVALUATION OF LARGE EDDY SIMULATION OF A WIND-TURBINE ARRAY BOUNDARY LAYER

D.Folch, F.X.Trias, A.Oliva

Heat and Mass Transfer Technological Center, Technical University of Catalonia david.folch@upc.edu

ECCOMAS 2024 LISBOA

D.Folch, F.X.Trias, A.Oliva

Introduction Algorithm Previous results Evaluation Conclusions

Introduction

Evaluate the performance of S3PR Large Eddy Simulation model on boundary layer and wind farm cases through different resolution meshes

Spatially filtered incompressible Navier-Stokes equations

$$\partial_t \overline{u} + C(\overline{u}, \overline{u}) = D(\overline{u}) - \nabla p - \nabla \cdot \tau(\overline{u});$$

 $\nabla \cdot \overline{u} = 0$

 $\tau(\overline{u}) \approx -2\nu_e S(\overline{u})$ is the LES closure $S(\overline{u}) = 1/2(\nabla \overline{u} + \nabla \overline{u}^T)$ is the rate-of-strain tensor ν_e is the eddy viscosity for each model

Quick S3PQR theory review

Besides the trace, several mathematical invariants can be calculated from the gradient tensor $G = \nabla \overline{u}$, for example:

$$Q_{G} = (1/2)(tr^{2}(G) - tr(G^{2}))$$

$$R_{G} = det(G)$$

$$Q_{S} = (1/2)(tr^{2}(S) - tr(S^{2}))$$

$$R_{S} = det(S)$$

$$V_{G}^{2} = 4(tr(S^{2}\Omega^{2}) - 2Q_{S}Q_{\Omega})$$

 $S = 1/2(G + G^T)$ and $\Omega = 1/2(G - G^T)$ are the symmetric and the skew-symmetric parts of the gradient tensor

Introduction	Algorithm 00	Previous results 000	Evaluation 00000000000000	Conclusions 00
S3PQR				

The symmetric tensor GG^{T} formally based on the lowest-order approximation of the subgrid stress tensor is

$$au(\overline{\boldsymbol{u}}) = rac{\Delta^2}{12} \mathsf{G}\mathsf{G}^{\mathcal{T}} + \mathcal{O}(\Delta^4)$$

Three invariants of this tensor can be defined and are directly related to the previous ones

$$P_{GG^{T}} = tr(GG^{T}) = 2(Q_{\Omega} - Q_{S})$$

$$Q_{GG^{T}} = 2(Q_{\Omega} - Q_{S})^{2} - Q_{G}^{2} + 4tr(S^{2}\Omega^{2})$$

$$R_{GG^{T}} = det(GG^{T}) = det(G)det(G^{T}) = R_{G}^{2}$$

$$(\blacksquare)$$

Introduction 000●	Algorithm 00	Previous results 000	Evaluation 0000000000000	Conclusions

S3PQR

S3PQR: combination of two invariants of GG^{T} (Trias et al. (2015))

$$\begin{split} \nu_{e}^{S3PQ} &= (C_{s3pq}\Delta)^{2}P_{GG^{T}}^{-5/2}Q_{GG^{T}}^{3/2} \\ \nu_{e}^{S3PR} &= (C_{s3pr}\Delta)^{2}P_{GG^{T}}^{-1}R_{GG^{T}}^{1/2} \\ \nu_{e}^{S3QR} &= (C_{s3qr}\Delta)^{2}Q_{GG^{T}}^{-1}R_{GG^{T}}^{5/6} \end{split}$$

where Δ is the subgrid characteristic length.

Two ways to determine the model constant C_{s3pq} :

1. Less or equal dissipation than Vreman's model.

$$C_{s3pq} = C_{s3pr} = C_{s3qr} = \sqrt{3}C_{Vr} \approx 0.458$$

2. The averaged dissipation of the models is equal to that of the Smagorinsky model.

$$C_{s3pq} = 0.572, \ C_{s3pr} = 0.709, \ C_{s3qr} = 0.762$$

Boundary layer and wind farm algorithm characteristics

- S3PQR LES model
- Semi-infinite domain that requires scaling procedure $y_{\infty} = L \frac{1+y}{1-y}$
- Pseudospectral: **Chebyshev polynomials** for Dirichlet and Newman boundary conditions

Main drawback (again): time-step of $O(1/N^2)$ for the convective term and $O(1/N^4)$ for the diffusive term!

High-resolution mesh computations are not feasible using fully explicit methods

Another algorithm details

- $Re_{\delta^*} = 1000$, where δ^* is the displacement thickness.
- Growing terms $GT(\overline{u}, \overline{U})$, Spalart and Leonard (1987)
- Wind-turbine model, Calaf et al. (2010)
- We will test the zero mean pressure gradient case

Previous computations (Folch et al. (2023)): Boundary layer and wind farm comparison between LES models: Smagorinsky, Verstappen, WALE, Vreman, and all the S3PQR.

Size domain for all of them $N_x \times N_y \times N_z = 32 \times 64 \times 32$ for streamwise, normal, and spanwise directions

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	●00	0000000000000	

Boundary Layer

Case PR. Left: normalized average streamwise velocity profile, U^+ ; log law; $U^+ = y^+$. Right: rms u^+ ; rms v^+ ; rms w^+ ; δ is the boundary layer thickness

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	0●0	0000000000000	

Wind farm

ECCOMAS 2024 LISBOA

D.Folch, F.X.Trias, A.Oliva

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	00●	00000000000000	

Wind farm velocity derivative

Left: S3PQR models. Right: other LES models.

Introduction 0000	Algorithm 00	Previous results 000	Evaluation ●000000000000	Conclusions

Evaluation

We will test: the NO MODEL vs S3PR LES algorithm For completeness, the physical interpretation of PR:

$$\begin{split} \nu_e^{S3PR} &= (C_{s3pr}\Delta)^2 P_{GGT}^{-1} R_{GGT}^{1/2} \\ \nu_e^{S3PR} &\propto \frac{|\det(G)|}{2((1/4)\Omega_i\Omega_i + (1/2)S_{ij}S_{ij})} \sim \frac{|\partial_t GG^T|}{|w|^2 + |\epsilon|} \end{split}$$

Mesh sizes $N_x x N_y x N_z$: 32x64x32 \rightarrow 64x64x64 \rightarrow 96x96x96 \rightarrow 128x128x128

For 128³: $\Delta x^+ \approx 20$, $\Delta z^+ \approx 6.7$ in wall units, and for the y-direction, 11 points within 9 wall units of the wall.

Semi-implicit algorithm

Recall:

- S3PQR yields non uniform (and non constant) eddy viscosity.
- The time step for the diffusive term in explicit schemes goes as $O(1/N^4)$

Solution: to compute explicitly the convective term and implicitly the diffusive term.

Caution: At every step, we should compute a triple convolution sum such as: $\nu_e \times \text{Scaling} \times \text{Chebyshev}$ derivative coefficients

Laboratori de Termotècnia i Energètica UNIVERSITAT POLITÈCNICA DE CATALUNYA

Semi-implicit solution

A general class of two-step methods:

 $Diffusion = (\nu_p + \nu_e) \nabla^2 (\theta u^{n+1} + (1-\theta)u^n)$

where ν_p is the prescribed viscosity of the case

We will make a slight modification:

 $Diffusion = (0.5\nu_p)\nabla^2 u^{n+1} + \nabla \cdot ((0.5\nu_p + \nu_e)(\nabla u^n + \nabla (u^n)^T))$

1. We calculate the matrix operator **only once** at the beginning with uniform and constant ν_p

2. Change in time-step: from $O(1/N^4)$ to $O(1/N^2)$

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	0000000000000	

Evaluation results

Boundary layer. Evolution of friction velocity:

Dimensions	No Model	S3PR
32x64x32	0.056	0.049
64 ³	0.051	0.048
96 ³	0.049	0.048
128 ³	0.049	0.048
Sp-Le DNS	0.049	

Reference: Spalart and Leonart (1987) 264×60×170 or Spalart (1988) 256×64×192

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	00000000000000	

Boundary Layer. NO MODEL

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	000000000000	

Boundary Layer. S3PR

Introduction	Algorithm	Previous results	Evaluation	Conclus
0000	00	000	00000000000000	00

Boundary Layer. NO MODEL vs S3PR

Wind farm. Instantaneous streamwise velocity

PR. Normalized streamwise velocity u^+ . $64 \times 64 \times 64$

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	000000000000000	

Wind farm. NO MODEL

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	00000000●0000	

Wind farm. S3PR

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	000000000000000	

Wind farm. NO MODEL vs S3PR

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	000000000000000	00

Wind farm. NO MODEL

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	000000000000000	

Wind farm. S3PR

Introduction	Algorithm	Previous results	Evaluation	Conclusions
0000	00	000	0000000000000	

Wind farm. NO MODEL vs S3PR

Conclusions

1. The no-model algorithm seems to approach an asymptotic profile for finer resolution.

2. The S3PR method gives the same asymptotic profile, even for coarse resolution.

3. The semi-implicit algorithm allows these higher-resolution computations.

Thank you for your attention.

Laboratori de Termotechia i Energetica UNIVERSITAT POLITÈCNICA DE CATALUNYA

Introduction 0000	Algorithm 00	Previous results 000	Evaluation 0000000000000	Conclusions
- Trias et a Building pro Physics of F - Spalart a Numerical S	I. (2015): F.X. oper invariants fo luids, vol. 27, no nd Leonard (19 imulation of Equ	Trias, D. Folch, A. or eddy-viscosity sub o. 6, p. 065103 87) : P. R. Spalart, uilibrium Turbulent I	Gorobets, A. Oliva. grid-scale models. A. Leonard. Direct Boundary Layers.	

Turbulent Shear Flows 5. Springer, Berlin, Heidelberg.

- **Spalart (1988)**: P. R. Spalart. Direct simulation of a turbulent boundary layer up to $R_{\theta} = 1410$. J. Fluid Mech., vol. 187, pp. 61-98

- **Calaf et al. (2010)**: M. Calaf, C. Meneveau, J. Meyers. Large eddy simulation study of fully developed wind-turbine array boundary layers. Physics of Fluids 22

- Folch et al. (2023): D. Folch, F.X. Trias, A. Oliva. Assessment of LES models for a fully developed wind-turbine array boundary layer. International Symposium on Turbulence, Heat and Mass Transfer: Rome, Italy, 11-15 September 2023". Begell House, 2023

