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CFD applications – 1

Figure: Simulation of flow around a square cylinder and Rayleigh-Bénard convection.

F.X. Trias et al. (2015). “Turbulent flow around a square cylinder at Reynolds number 22000:
a DNS study” in Computers and Fluids.

F. Dabbagh et al. (2017). “A priori study of subgrid-scale features in turbulent
Rayleigh-Bénard convection” in Physics of Fluids.
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CFD applications – 2

Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model.

D. E. Aljure et al. (2018). “Flow over a realistic car model: Wall modeled large eddy
simulations assessment and unsteady effects” in Journal of Wind Engineering and Industrial
Aerodynamics.
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CFD applications – 3

Figure: Simulation of brazed and expanded tube-fin heat exchangers.

L. Paniagua et al. (2014). “Large Eddy Simulations (LES) on the Flow and Heat Transfer in a
Wall-Bounded Pin Matrix” in Numerical Heat Transfer, Part B: Fundamentals.
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CFD applications – 4

Figure: Simulation of wind plant and array of “buildings”.

M. Calaf et al. (2010). “Large eddy simulation study of fully developed wind-turbine array
boundary layers” in Physics of Fluids.

P. A. Mirzaei (2021). “CFD modeling of micro and urban climates: Problems to be solved in
the new decade” in Sustainable Cities and Society.
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Poisson’s equation in incompressible CFD

Fractional Step Method (FSM)

1 Evaluate the auxiliar vector field r(un) := −(u · ∇)u+ ν∆u

2 Evaluate the predictor velocity up := un +∆t
(
3
2
r(un)− 1

2
r(un−1)

)
3 Obtain the pressure field by solving a Poisson equation:

∇ ·
(
1

ρ
∇pn+1

)
=

1

∆t
∇ · up

4 Obtain the new divergence-free velocity un+1 = up −∆t∇pn+1

Poisson’s equation for incompressible single-phase flows

Continuous:
∆p =

ρ

∆t
∇ · up

Discrete:
Ax = b
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Mesh symmetries and SpMM
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Meshes with symmetries – 1

(a) 1 symmetry (b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.
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Meshes with symmetries – 2

(a) 1 symmetry (b) 2 symmetries

Figure: 2D meshes with varying number of symmetries. Blue: inner nodes, red:
interface nodes.
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Meshes with symmetries – 3

(a) Mirrored geometry

(b) Repeated geometry

Figure: 1D meshes with a random mirrored/repeated ordering.
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Using SpMM throughout the simulations – 1

Figure: Pressure field on
a 217-pin rod bundle.

Applying an “inner-interface” ordering makes the
discrete Laplacian satisfy:

A =

(
K̄ B̄
B̄t C̄

)
∈ Rn×n,

where K̄ ∈ Rninn×ninn , B̄ ∈ Rninn×nifc , C̄ ∈ Rnifc×nifc .

Then, thanks to the mirrored/repeated ordering:

K̄ = I6 ⊗K and B̄ = I6 ⊗B.

E. Merzari et al. (2020). “Wall resolved large eddy simulation of reactor core flows with the
spectral element method”, in Nuclear Engineering and Design.
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Using SpMM throughout the simulations – 2

On a domain with nb repeated/mirrored subdomains, virtually all operators
satisfy structures equivalent to:

H̄ = Inb ⊗H ∈ Rn×m s.t. H ∈ Rn/nb×m/nb .

Then, given x ∈ Rm, the products by H̄ can be accelerated by replacing:

SpMV:

H
. . .

H


 x1

...
xnb



with SpMM: H (x1 . . . xnb)

SpMM vs SpMV

SpMV reads H nb times, whereas SpMM once

H̄ takes nb times more memory than H

14
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Algebraic Multigrid reduction framework
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Right, left and split preconditioning

Let A ∈ Rn and x, b ∈ Rn. Then, given the linear system Ax = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M−1 ≃ A−1, the left-preconditioned system is:

M−1Ax = M−1b

Right preconditioning

Given the preconditioner M−1 ≃ A−1, the right-preconditioned system is:

AM−1y = b, where Mx = y

Split preconditioning

Given the preconditioner M−1 = M−1
1 M−1

2 ≃ A−1, the split-preconditioned
system is:

M−1
1 AM−1

2 y = M−1
1 b, where M2x = y

Thus, preconditioning reduces to operations of the type: y = M−1x
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AMGR preconditioner

AMGR relies on the following prolongation:

P :=

(
W̄
Inc

)
∈ Rn×nc s.t. W̄ ∈ Rnf×nc and Inc ∈ Rnc×nc ,

where nf and nc are the number of fine and coarse nodes.

Then, we apply a standard AMG to the reduced operator:

Ac := PT

(
K̄ B̄
B̄t C̄

)
P

nf=ninn
nc=nifc= W̄T K̄W + W̄T B̄ + B̄T W̄ + C̄.

The fastest coarsening is nc = nifc, but it results in excessive f -c distances.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

G. Isotton et al. (2021). “Chronos: A general purpose AMG solver for high performance
computing” in SIAM Journal on Scientific Computing.
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nf=ninn
nc=nifc= W̄T K̄W + W̄T B̄ + B̄T W̄ + C̄.

The fastest coarsening is nc = nifc, but it results in excessive f -c distances.
Hence, to allow for an accurate interpolation, we turn inner nodes into coarse:

Pick a strength of connection measure

Filter the resulting adjacency graph, T

Compute a maximum independent set on T k.

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.

G. Isotton et al. (2021). “Chronos: A general purpose AMG solver for high performance
computing” in SIAM Journal on Scientific Computing.
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nc=nifc= W̄T K̄W + W̄T B̄ + B̄T W̄ + C̄.

The fastest coarsening is nc = nifc, but it results in excessive f -c distances.

Finally, the top-level smoother is:

M :=

(
MK̄

MC̄

)
∈ Rn×n

s.t. MK̄ = Inb ⊗MK .

C. Janna and M. Ferronato (2011). “Adaptive pattern research for block FSAI
preconditioning” in SIAM Journal on Scientific Computing.
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Numerical experiments: DrivAer fastback

Table: DrivAer car with 106.4M DOFs on five JFF nodes (2x Intel Xeon 6230).

preconditioner nb coarsening ratio avg nnzr its t-sol (s) speed-up
AMG 1 0.36 14.7
AMGR 2 0.14 37.4

A. I. Heft et al. (2012). “Introduction of a new realistic generic car model for aerodynamic
investigations” in SAE International.
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Numerical experiments: DrivAer fastback

Table: DrivAer car with 106.4M DOFs on five JFF nodes (2x Intel Xeon 6230).

preconditioner nb coarsening ratio avg nnzr its t-sol (s) speed-up
AMG 1 0.36 14.7 26 7.71 1.00
AMGR 2 0.14 37.4 26 5.39 1.43

A. I. Heft et al. (2012). “Introduction of a new realistic generic car model for aerodynamic
investigations” in SAE International.

18



Context of the work Mesh symmetries and SpMM Algebraic Multigrid reduction framework Concluding remarks

Numerical experiments: heat exchanger

Table: Heat exchanger with 18.4M DOFs on two JFF nodes (2x Intel Xeon 6230).

preconditioner nb coarsening ratio avg nnzr its t-sol (s) speed-up
AMG 1 0.36 14.5
AMGR 2 0.14 37.5
AMGR 4 0.15 37.4
AMGR 8 0.15 37.6

L. Paniagua et al. (2014). “Large eddy simulations (LES) on the flow and heat transfer in a
wall-bounded pin matrix” in Numerical Heat Transfer, Part B: Fundamentals.

19



Context of the work Mesh symmetries and SpMM Algebraic Multigrid reduction framework Concluding remarks

Numerical experiments: heat exchanger

Table: Heat exchanger with 18.4M DOFs on two JFF nodes (2x Intel Xeon 6230).

preconditioner nb coarsening ratio avg nnzr its t-sol (s) speed-up
AMG 1 0.36 14.5 20
AMGR 2 0.14 37.5 19
AMGR 4 0.15 37.4 19
AMGR 8 0.15 37.6 18

L. Paniagua et al. (2014). “Large eddy simulations (LES) on the flow and heat transfer in a
wall-bounded pin matrix” in Numerical Heat Transfer, Part B: Fundamentals.
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Numerical experiments: heat exchanger

Table: Heat exchanger with 18.4M DOFs on two JFF nodes (2x Intel Xeon 6230).

preconditioner nb coarsening ratio avg nnzr its t-sol (s) speed-up
AMG 1 0.36 14.5 20 1.54 1.00
AMGR 2 0.14 37.5 19 1.12 1.38
AMGR 4 0.15 37.4 19 1.03 1.50
AMGR 8 0.15 37.6 18 0.91 1.68

L. Paniagua et al. (2014). “Large eddy simulations (LES) on the flow and heat transfer in a
wall-bounded pin matrix” in Numerical Heat Transfer, Part B: Fundamentals.
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Concluding remarks
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Conclusions

Summary:

Exploiting symmetries reduces the setup costs of the matrices.

Exploiting symmetries reduces the memory footprint of the matrices.

SpMM naturally applies to all operators of the form H̄ = Inb ⊗H.

SpMM makes matrix multiplications considerably more compute-intensive.

AMGR reduces the memory footprint of the top-level smoother.

AMGR reduces the setup costs of the top-level smoother.

AMGR does not harm AMG’s convergence.

AMGR results in up to 1.68x overall speedups.

Ongoing work:

Test AMGR on denser problems.

Extend the AMG reduction to general problems.
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AMGR reduces the memory footprint of the top-level smoother.

AMGR reduces the setup costs of the top-level smoother.

AMGR does not harm AMG’s convergence.

AMGR results in up to 1.68x overall speedups.

Ongoing work:

Test AMGR on denser problems.

Extend the AMG reduction to general problems.
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Thanks for your attention!

22


	Context of the work
	Mesh symmetries and SpMM
	Algebraic Multigrid reduction framework
	Concluding remarks
	

