## An Efficient Two-Layer Wall Model for High Reynolds Number Large Eddy Simulation

#### J. Calafell<sup>1</sup> F.X. Trias<sup>1</sup> A. Oliva<sup>1</sup>

<sup>1</sup>Universitat Politècnica de Catalunya

7th European Conference on Computational Fluid Dynamics, ECCOMAS. Glasgow, June 2018

> Centre Tecnològic de Transferència de Calo Laboratori de Ternotècnia i Energètica UNIVERSITAT POLITÈCNICA DE CATALUNYA



- 1 Background and motivation.
- 2 Two-Layer wall models.
- 3 Time-averaging filter.
- 4 Tests and results.
- **5** Conclusions.



#### Background and motivation

- **High Reynolds number aerodynamics** are of capital importance since they are present in key industries such as wind energy, aeronautics or automotive industry.
- Large Eddy Simulation is still **prohibitively expensive** at high Reynolds Number, specially if solid bounds are involved.
- Wall models are intended to reduce the mesh requirements in wall areas. An efficient Two-Layer Model is proposed.

3/22

 The proposed model featrues a one-step low-cost methodology intended to overcome the recurrent problems of Two Layer Models. Background and motivation. Two-Layer wall models. Conclusions

#### Wall modeling benefits

- Grid size requirements: According Choi and Moin (2011):
  - Wall Modeled LES:  $N_i \sim Re_{Ix}$
  - Resolved Wall LES:  $N_i \sim Re_{L_x}^{1.85}$ •

#### Flat plate Airfoil Test:

| Rec                                                   | $N_i$ (wall modeled LES)                                       | N <sub>i</sub> (wall resolved LES)                                        | _                                                                                  |
|-------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 10 <sup>6</sup><br>10 <sup>7</sup><br>10 <sup>8</sup> | $3.63 \times 10^7$<br>$8.20 \times 10^8$<br>$9.09 \times 10^9$ | $5.23 \times 10^{7}$<br>7.76 × 10 <sup>9</sup><br>5.98 × 10 <sup>11</sup> | _                                                                                  |
| 10 <sup>5</sup>                                       | $9.26 \times 10^{10}$                                          | $4.34 \times 10^{10}$                                                     | Centre Tecnològic de Transferència de Ca<br>Laboratori de Termotèceja i Enerrobica |

cansferência de Calo

#### Wall modeling benefits

• Time step benefits:

According the diffusive CFL condition, the bound value for the time step is:

• Convective: 
$$\Delta t \leq \Delta t_{bound} = C_{conv} \left[ \frac{\Delta x_i}{v_i} \right]_{min}$$

• Diffusive: 
$$\Delta t \leq \Delta t_{bound} = C_{diff} \left[ rac{\Delta x_i^2}{
u} 
ight]_{min}$$



#### Wall modeling benefits

• Total computational cost derived from the temporal and spatial resolution requirements:

- Wall Modeled LES:  $T_{cc}^{WM} \sim Re_{Lx}^{4/3} \approx Re_{Lx}^{1.33}$
- Wall Resolved LES:  $T_{cc}^{WR} \sim Re_{Lx}^{65/21} \approx Re_{Lx}^{3.09}$



#### General strategy

- The Two-Layer models are based on the computation of the near-wall flow field in order to obtain an accurate wall shear stress. This new value is used when evaluating the diffusive term of the LES equations.
- Governing equations are solved in an embedded mesh that is generated by extruding the superficial mesh of the solid between the wall itself and the first off-wall node of the LES mesh.



## Two-Layer Wall models: Governing Equations.

The **range of applicability** of the wall model depends on the governing equations solved within the wall mesh: -**Equilibrium** flows: attached boundary layers, no adverse pressure gradients: **Diffusive term** 

$$\frac{d}{dn}\left[\left(\mu+\mu_{Twm}\right)\frac{d\mathbf{U}_{||}}{dn}\right]=0\tag{1}$$

-General **non-equilibrium** flows: deatached boundary layers, large adverse pressure gradients: **TBLE or RANS equations** 

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla) \mathbf{U} = \nabla \cdot [\mathbf{2}(\nu + \nu_{\mathsf{Twm}})\mathbf{S}(\mathbf{U})] - \nabla \mathbf{P}$$
(2)

8 / 22

Laboratori de Termotècnia i Energètica

#### General Mathematical and Numerical Model.

Unsteady Reynolds Averaged Navier-Stokes

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla) \mathbf{U} = \nabla \cdot [\mathbf{2}(\nu + \nu_{\mathsf{Twm}})\mathbf{S}(\mathbf{U})] - \nabla \mathbf{P}$$
(3)

#### RANS Model: Mixing-length eddy viscosity

$$\nu_{Twm} = \left(\kappa \mathbf{y}^{+}\right)^{2} |\mathbf{S}| \left[1 - \exp\left(-\mathbf{y}^{+}/\mathbf{A}^{+}\right)\right]^{2}, \qquad (4)$$

Centre Tecnològic de Transferència de Calo Laboratori de Termotècnia i Energètica UNIVERSITAT POLITÉONICA DE CATALUNYA

# Numerical Model: Boundary Conditions.

#### Wall Domain Mesh (WDM):

- Top boundary: Dirichlet for P and *U* from the LES.
- Solid boundary: Neumann for P and no-slip for  $\vec{U}$ .
- Side boundary: The same than the LES domain.



10/22

Laboratori de Termotècnia i Energètica

## Wall shear stress models: Log-Layer Mismatch.

- Log-layer mismatch: a general error of wall shear stress models.
- Source of error: near-wall numerical and subgrid errors (Kawai et al. 2012)
- Proposed solution: extending the wall model mesh beyond the first off-wall row of nodes (Kawai et al. 2012)



### Resolved Reynolds stresses inflow.

- **Resolved Reynolds stresses inflow**: a particular error of RANS-based models featuring advective term (Cabot 1999).
- Source of error: overprediction of the total Reynolds stresses within the RANS layer due to LES resolved inflow data.

#### • Proposed solution:

- Dynamic calculation of  $\kappa$  coefficient in the RANS model (Cabot and Moin 1999, Kawai et al. 2012)
- Subtraction of the Resolved stresses contribution to the RANS turbulent viscosity (Park and Moin 2014)

$$\nu_{T_{wm}} = \nu_{Tml} - \left(-\frac{R(\mathbf{U})\mathbf{S}(\mathbf{U})}{2S(\mathbf{U})\mathbf{S}(\mathbf{U})}\right)$$



# Time-averaging filter at WM/LES interface.

This methodology tackles the log-layer mismatch and the Resolved Reynolds stress inflow problems at once with a **single and low-computational-cost step.** 

- It suppresses the turbulent fluctuations incoming from the LES domain.
- $\overline{\phi}(t)$  is the local time-average of a given variable  $\phi$  with an exponential decaying memory.
- The memory decaying speed depends on the size of T.
- The value of T has to be of the same order of magnitude than the large flow structure characteristic time-scale.

$$\overline{\phi}(t) = \int_0^t \phi(\xi) rac{exp[(\xi - t)/T]}{T} d\xi$$

## Time-averaging filter performance evaluation.

- The wall model was connected to wall-resolved  $Re_{\tau} \approx 500$  pipe flow at a heiht of  $y^+ \approx 150$ .
- The purpose was to reproduce the flow physics within the wall layer.



#### Time-averaging filter performance evaluation.

• Near wall velocity profile. Comparison with DNS data from Chin et al. (2010)



#### Time-averaging filter performance evaluation.

• Wall shear stress evaluation throught the computed  $Re_{\tau}$  value

| Time-Averaging | Park   | Computed $Re_{\tau}$ | rel. error [%]                     |
|----------------|--------|----------------------|------------------------------------|
| filter         | Method |                      | ref. $\textit{Re}_{	au} pprox$ 500 |
|                |        |                      |                                    |
| NO             | NO     | 529.25               | 5.85                               |
| NO             | YES    | 522.07               | 4.41                               |
| YES            | NO     | 503.64               | 0.72                               |
| YES            | YES    | 503.71               | 0.74                               |



### WMLES of a pipe flow at $Re_{\tau} \approx 3000$ .

- LES model: Original Smagorinsky (1963)
- First off-wall node placed at  $y^+ \approx 30$
- No presence of Log-layer mismatch (Yang and Moin 2017)



#### WMLES of a pipe flow at $Re_{\tau} \approx 3000$ .



# WMLES of a DU 91-W2-250 airfoil at $AoA = 15.2^{\circ}$ and $Re = 3 \times 10^{6}$ .



# WMLES of a DU 93-W2-250 airfoil at $AoA = 15.2^{\circ}$ and $Re = 3 \times 10^{6}$ .



#### Conclusions

- An efficient Two-Layer wall model has been proposed.
- A time-averaging filter is used to tackle two recurrent problemes of TLM with a single and low-computational-cost technique.
- The time-averaging filter is more efficient in blocking the resolved Reynolds stresses inflow than the existing methodologies.
- The methodlogy has been tested in **equilibrium and non-equilibrium** conditions obtaining good results.
- Further studies on dynamic procedures to determine the filtering period *T* will be carried out.

Centre Tecnològic de Transferència de Calor Laboratori de Transferència de Calor Universariar POLITICIONE de Cardu Ura E E E E E E E E C Card Ura 21 / 22

# Thank you for your attention!

