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Background and motivation
• High Reynolds number aerodynamics are of capital

importance since they are present in key industries such
as wind energy, aeronautics or automotive industry.

• Large Eddy Simulation is still prohibitively expensive at
high Reynolds Number, specially if solid bounds are
involved.

• Wall models are intended to reduce the mesh
requirements in wall areas. An efficient Two-Layer Model
is proposed.

• The proposed model featrues a one-step low-cost
methodology intended to overcome the recurrent
problems of Two Layer Models.
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Wall modeling benefits

• Grid size requirements: According Choi and Moin (2011):

• Wall Modeled LES: Ni ∼ ReLx

• Resolved Wall LES: Ni ∼ Re1.85
Lx

Flat plate Airfoil Test:

Rec Ni (wall modeled LES) Ni (wall resolved LES)

106 3.63× 107 5.23× 107

107 8.20× 108 7.76× 109

108 9.09× 109 5.98× 1011

109 9.26× 1010 4.34× 1013
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Wall modeling benefits

• Time step benefits:

According the diffusive CFL condition, the bound value for the
time step is:

• Convective: ∆t ≤ ∆tbound = Cconv

[
∆xi
vi

]
min

• Diffusive: ∆t ≤ ∆tbound = Cdiff

[
∆x2

i
ν

]
min
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Wall modeling benefits

• Total computational cost derived from the temporal and
spatial resolution requirements:

• Wall Modeled LES: T WM
cc ∼ Re4/3

Lx ≈ Re1.33
Lx

• Wall Resolved LES: T WR
cc ∼ Re65/21

Lx ≈ Re3.09
Lx
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General strategy
• The Two-Layer models are based on the computation of

the near-wall flow field in order to obtain an accurate wall
shear stress. This new value is used when evaluating the
diffusive term of the LES equations.

• Governing equations are solved in an embedded mesh
that is generated by extruding the superficial mesh of the
solid between the wall itself and the first off-wall node of
the LES mesh.

y+

hLES

First LES grid point

τw LES=(μ+μsgs )
v LES
hLES

v LES

v BLM
hBLM τw BLM=(μ+μ t)

v BLM
hBLM

τw LES<τw BLM

v BLM
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Two-Layer Wall models: Governing Equations.
The range of applicability of the wall model depends on the
governing equations solved within the wall mesh:
-Equilibrium flows: attached boundary layers, no adverse
pressure gradients: Diffusive term

d
dn

[
(µ+ µTwm)

dU||

dn

]
= 0 (1)

-General non-equilibrium flows: deatached boundary layers,
large adverse pressure gradients: TBLE or RANS equations

∂U
∂t

+ (U · ∇) U = ∇ · [2(ν + νTwm)S(U)]−∇P (2)
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General Mathematical and Numerical Model.

• Unsteady Reynolds Averaged Navier-Stokes

∂U
∂t

+ (U · ∇) U = ∇ · [2(ν + νTwm)S(U)]−∇P (3)

• RANS Model: Mixing-length eddy viscosity

νTwm =
(
κy+

)2 |S|
[
1− exp

(
−y+/A+

)]2
, (4)
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Numerical Model: Boundary Conditions.
Wall Domain Mesh (WDM):
• Top boundary: Dirichlet for

P and ~U from the LES.
• Solid boundary: Neumann

for P and no-slip for ~U.
• Side boundary: The same

than the LES domain.
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Wall shear stress models: Log-Layer Mismatch.
• Log-layer mismatch: a general error of wall shear stress

models.
• Source of error: near-wall numerical and subgrid errors

(Kawai et al. 2012)
• Proposed solution: extending the wall model mesh

beyond the first off-wall row of nodes (Kawai et al. 2012)
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Resolved Reynolds stresses inflow.

• Resolved Reynolds stresses inflow: a particular error of
RANS-based models featuring advective term (Cabot
1999).

• Source of error: overprediction of the total Reynolds
stresses within the RANS layer due to LES resolved inflow
data.

• Proposed solution:
• Dynamic calculation of κ coefficient in the RANS model

(Cabot and Moin 1999, Kawai et al. 2012)
• Subtraction of the Resolved stresses contribution to the

RANS turbulent viscosity (Park and Moin 2014)

νTwm = νTml −
(
− R(U)S(U)

2S(U)S(U)

)
, (5)
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Time-averaging filter at WM/LES interface.

This methodology tackles the log-layer mismatch and the
Resolved Reynolds stress inflow problems at once with a
single and low-computational-cost step.
• It suppresses the turbulent fluctuations incoming from the

LES domain.
• φ(t) is the local time-average of a given variable φ with an

exponential decaying memory.
• The memory decaying speed depends on the size of T.
• The value of T has to be of the same order of magnitude

than the large flow structure characteristic time-scale.

φ(t) =

∫ t

0
φ(ξ)

exp[(ξ − t)/T ]

T
dξ (6)
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Time-averaging filter performance evaluation.
• The wall model was connected to wall-resolved Reτ ≈ 500

pipe flow at a heiht of y+ ≈ 150.
• The purpose was to reproduce the flow physics within the

wall layer.
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Time-averaging filter performance evaluation.
• Near wall velocity profile. Comparison with DNS data from

Chin et al. (2010)

 0

 5

 10

 15

 20

10
0

10
1

10
2

u
+

y
+

No Park method / No Filter
No Park method / Filter
Park method / No Filter

DNS

15 / 22



Background and motivation.
Two-Layer wall models.

Time-averaging filter.
Tests and results.

Conclusions.

Time-averaging filter performance evaluation.

• Wall shear stress evaluation throught the computed Reτ

value
Time-Averaging Park Computed Reτ rel. error [%]

filter Method ref. Reτ ≈ 500

NO NO 529.25 5.85
NO YES 522.07 4.41
YES NO 503.64 0.72
YES YES 503.71 0.74
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WMLES of a pipe flow at Reτ ≈ 3000.
• LES model: Original Smagorinsky (1963)
• First off-wall node placed at y+ ≈ 30
• No presence of Log-layer mismatch (Yang and Moin 2017)
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WMLES of a pipe flow at Reτ ≈ 3000.
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WMLES of a DU 91-W2-250 airfoil at AoA = 15.2◦ and
Re = 3× 106.

-0.5 0 0.5 1-9.330e-01 1.689e+00

U

-0.5 0 0.5 1-9.330e-01 1.689e+00

U

0

20

40

60

80

100

120

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

y
+
 L

D
M

y
+
 W

D
M

x/c

LES mesh (LDM)
Wall model mesh (WDM)

19 / 22



Background and motivation.
Two-Layer wall models.

Time-averaging filter.
Tests and results.

Conclusions.

WMLES of a DU 93-W2-250 airfoil at AoA = 15.2◦ and
Re = 3× 106.

-4.0

-3.0

-2.0

-1.0

0.0

1.0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
p

x/c

 WMLES
 LES-only

Experimental Timmer et al. 2003

Cl rel. error [%] Cd rel. error [%]

Experimental 1.128 - 0.1144 -
LES-only 0.93 17.55 0.2075 80.94
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Conclusions

• An efficient Two-Layer wall model has been proposed.

• A time-averaging filter is used to tackle two recurrent problemes of TLM
with a single and low-computational-cost technique.

• The time-averaging filter is more efficient in blocking the resolved
Reynolds stresses inflow than the existing methodologies.

• The methodlogy has been tested in equilibrium and non-equilibrium
conditions obtaining good results.

• Further studies on dynamic procedures to determine the filtering period
T will be carried out.
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Thank you for your attention!
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