Advanced techniques for gray area mitigation in DES simulations and their effects on the subsonic round jet acoustic spectra

A.P. Duben¹, J. Ruano², J. Rigola² and F.X. Trias²

¹ Keldysh Insitute of Applied Mathematics (KIAM), Moscow, Russia

²Heat and Mass Transfer Technological Center (CTTC), Universitat Politècnica de Catalunya – BarcelonaTech (UPC) ESEIAAT

ETMM13, September 2021

A.P. Duben, J. Ruano, J. Rigola and F.X. Trias

Index of Contents

2 Case formulation

3 Results

Jet Noise Computational AeroAcoustics The Gray-Area problem

<ロ> <四> <回> <三> <三> <三> <三> <三> <三</p>

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

- Noise begins to be a problem.
- Noise needs to be studied, understood and reduced.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

- Noise begins to be a problem.
- Noise needs to be studied, understood and reduced.

Two main different noise mechanisms can be observed:

Jet Noise Computational AeroAcoustics The Gray-Area problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

- Noise begins to be a problem.
- Noise needs to be studied, understood and reduced.

Two main different noise mechanisms can be observed:

• Aircraft noise: Landing gears, Wings, Nacelles, Fusellage,...

Jet Noise Computational AeroAcoustics The Gray-Area problem

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

- Noise begins to be a problem.
- Noise needs to be studied, understood and reduced.

Two main different noise mechanisms can be observed:

- Aircraft noise: Landing gears, Wings, Nacelles, Fusellage,...
- Engine Noise: Turbine, Fan inlet, Jet,...

Jet Noise Computational AeroAcoustics The Gray-Area problem

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

- Noise begins to be a problem.
- Noise needs to be studied, understood and reduced.

Two main different noise mechanisms can be observed:

- Aircraft noise: Landing gears, Wings, Nacelles, Fusellage,...
- Engine Noise: Turbine, Fan inlet, Jet,...

Obtaining jet noise values

We can measure noise "directly".

• Wind tunnels, direct measuring,...

Jet Noise Computational AeroAcoustics The Gray-Area problem

Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

- Noise begins to be a problem.
- Noise needs to be studied, understood and reduced.

Two main different noise mechanisms can be observed:

- Aircraft noise: Landing gears, Wings, Nacelles, Fusellage,...
- Engine Noise: Turbine, Fan inlet, Jet,...

Obtaining jet noise values

We can measure noise "directly".

• Wind tunnels, direct measuring,...

Or we can simulate it.

• Which is what Computational AeroAcoustics (CAA) does.

Jet Noise Computational AeroAcoustics The Gray-Area problem

<ロ> <四> <回> <三> <三> <三> <三> <三> <三</p>

Computational AeroAcoustics

Jet Noise Computational AeroAcoustics The Gray-Area problem

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

Computational AeroAcoustics

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.
- We focus our attention onto two main issues that affect the quality of the solution:

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.
- We focus our attention onto two main issues that affect the quality of the solution:
 - The numerical discretization.

Jet Noise Computational AeroAcoustics The Gray-Area problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computational AeroAcoustics

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.
- We focus our attention onto two main issues that affect the quality of the solution:
 - The numerical discretization.
 - The turbulence modellization.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Computational AeroAcoustics needings

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.
- We focus our attention onto two main issues that affect the quality of the solution:
 - The numerical discretization.
 - The turbulence modellization.

Numerical discretization

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Computational AeroAcoustics needings

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.
- We focus our attention onto two main issues that affect the quality of the solution:
 - The numerical discretization.
 - The turbulence modellization.

Numerical discretization

• High-order schemes allow obtaining more accurate numerical solutions.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Computational AeroAcoustics needings

- CAA requires accurate numerical solutions in the hydrodynamic region.
 - This solutions are used as input data in the acoustic solver.
- We focus our attention onto two main issues that affect the quality of the solution:
 - The numerical discretization.
 - The turbulence modellization.

Numerical discretization

- High-order schemes allow obtaining more accurate numerical solutions.
 - However, their implementation onto a general framework is not always possible.
 - Additionally, there is a loss of kinetic energy, i.e. not skew-symmetric.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Numerical discretization (cont.)

Jet Noise Computational AeroAcoustics The Gray-Area problem

<ロ> <四> <回> <三> <三> <三> <三> <三> <三</p>

Computational AeroAcoustics

Numerical discretization (cont.)

- Low-order schemes can be used.
 - As long as mesh is fine enough.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Numerical discretization (cont.)

- Low-order schemes can be used.
 - As long as mesh is fine enough.
- Or finally, we can use 2nd order schemes with extended stencils.
 - High-resolution schemes without so strict mesh requirements.

Jet Noise Computational AeroAcoustics The Gray-Area problem

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Computational AeroAcoustics

Numerical discretization (cont.)

- Low-order schemes can be used.
 - As long as mesh is fine enough.
- Or finally, we can use 2nd order schemes with extended stencils.
 - High-resolution schemes without so strict mesh requirements.

Turbulence modelling

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Numerical discretization (cont.)

- Low-order schemes can be used.
 - As long as mesh is fine enough.
- Or finally, we can use 2nd order schemes with extended stencils.
 - High-resolution schemes without so strict mesh requirements.

Turbulence modelling

 RANS-LES models offer a balance between accurate solutions and computational cost.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Computational AeroAcoustics

Numerical discretization (cont.)

- Low-order schemes can be used.
 - As long as mesh is fine enough.
- Or finally, we can use 2nd order schemes with extended stencils.
 - High-resolution schemes without so strict mesh requirements.

Turbulence modelling

- RANS-LES models offer a balance between accurate solutions and computational cost.
- More precisely, non-zonal DES aproaches.
 - Extensively validated and used.
 - Their current studies focus on Gray-Area Mitigation techniques.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Jet Noise Computational AeroAcoustics The Gray-Area problem

<ロ> <四> <回> <三> <三> <三> <三> <三> <三</p>

Gray-Area Mitigation

The Gray-Area problem

A.P. Duben, J. Ruano, J. Rigola and F.X. Trias

Jet Noise Computational AeroAcoustics The Gray-Area problem

Gray-Area Mitigation

The Gray-Area problem

- Delay from RANS to mesh-resolved turbulence.
 - Generation of numerical oscillation.
 - In the field of AeroAcoustics, this implies generating a purely numerical non-physical noise.

Jet Noise Computational AeroAcoustics The Gray-Area problem

Gray-Area Mitigation

The Gray-Area problem

- Delay from RANS to mesh-resolved turbulence.
 - Generation of numerical oscillation.
 - In the field of AeroAcoustics, this implies generating a purely **numerical non-physical noise**.
- GAM reduction techniques rely on joint usage of:

Jet Noise Computational AeroAcoustics The Gray-Area problem

Gray-Area Mitigation

The Gray-Area problem

- Delay from RANS to mesh-resolved turbulence.
 - Generation of numerical oscillation.
 - In the field of AeroAcoustics, this implies generating a purely numerical non-physical noise.
- GAM reduction techniques rely on joint usage of:
 - Special length scale.
 - $\Delta \omega$ [Chauvet et. al., 2017], $\tilde{\Delta} \omega$ [Mockett et. al., 2015], Δ_{SLA} [Shur et. al., 2015], Δ_{lsq} [Trias et. al., 2017].

Jet Noise Computational AeroAcoustics The Gray-Area problem

Gray-Area Mitigation

The Gray-Area problem

- Delay from RANS to mesh-resolved turbulence.
 - Generation of numerical oscillation.
 - In the field of AeroAcoustics, this implies generating a purely numerical non-physical noise.
- GAM reduction techniques rely on joint usage of:
 - Special length scale.
 - $\Delta \omega$ [Chauvet et. al., 2017], $\tilde{\Delta} \omega$ [Mockett et. al., 2015], Δ_{SLA} [Shur et. al., 2015], Δ_{lsq} [Trias et. al., 2017].
 - Advanced turbulence model.
 - σ [Nicoud et. al., 2011], WALE [Nicoud et. al., 2011], S3QR [Trias et. al., 2015].

Case and turbulence models Mesh definition Numerical algorithms

Case and turbulence models

Round jet

A.P. Duben, J. Ruano, J. Rigola and F.X. Trias

Case and turbulence models Mesh definition Numerical algorithms

Case and turbulence models

Round jet

- Immersed unheated subsonic round jet at $Re_D = 1.1 \cdot 10^6$, Ma = 0.9.
- Profiles imposed at nozzle exit.
 - Provided by M.Shur and M.Strelets from Saint Petersburg Polytechnic University.

Case and turbulence models Mesh definition Numerical algorithms

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ▶

Case and turbulence models

Round jet

- Immersed unheated subsonic round jet at $Re_D = 1.1 \cdot 10^6$, Ma = 0.9.
- Profiles imposed at nozzle exit.
 - Provided by M.Shur and M.Strelets from Saint Petersburg Polytechnic University.

Used models

Case	Turbulence model	Length scale
1	S3QR	lsq
2	σ	$\tilde{\Delta}\omega$
3	SMG	SLA

Case and turbulence models Mesh definition Numerical algorithms

Mesh definition

Computational meshes

Mesh characteristics	Mesh 1	Mesh 2	Mesh 3
Total cell count	1.52M	4.13M	8.87M
N_{arphi}	64	80	160
$\Delta x/D$ at nozzle exit	0.011	0.008	0.008
Min Δr	0.003D	0.0025D	0.0025D

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Case and turbulence models Mesh definition Numerical algorithms

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Mesh definition (cont.)

Case and turbulence models Mesh definition Numerical algorithms

The main differences between used codes are:				
_	Characteristic	NOISEtte	OpenFOAM	

Case and turbulence models Mesh definition Numerical algorithms

he main differences be	tween used codes are:	
Characteristic	NOISEtte	OpenFOAM
FVM approach	Vertex-centered	Cell-centered

Case and turbulence models Mesh definition Numerical algorithms

The	main differences be	etween used codes are:		
	Characteristic	NOISEtte	OpenFOAM	
	FVM approach Hybrid scheme	Vertex-centered Guseva et. al., 2017	Cell-centered Travin et. al., 2000	

Case and turbulence models Mesh definition Numerical algorithms

The	main differences be	etween used codes are:		
	Characteristic	NOISEtte	OpenFOAM	
	FVM approach Hybrid scheme Central scheme	Vertex-centered Guseva et. al., 2017 4th order	Cell-centered Travin et. al., 2000 2nd order	

Case and turbulence models Mesh definition Numerical algorithms

The main differences be	tween used codes are:	
Characteristic	NOISEtte	OpenFOAM
FVM approach Hybrid scheme Central scheme Upwind scheme	Vertex-centered Guseva et. al., 2017 4th order 5th order	Cell-centered Travin et. al., 2000 2nd order 2nd order

Case and turbulence models Mesh definition Numerical algorithms

Numerical algorithms

Т

he main differences between used codes are:				
	Characteristic	NOISEtte	OpenFOAM	
	FVM approach	Vertex-centered	Cell-centered	
	Central scheme	4th order	2nd order	
	Upwind scheme	5th order	2nd order	
	I ime integration	RK 4th order	Implicit 2nd order	

Case and turbulence models Mesh definition Numerical algorithms

he main differences between used codes are:					
-	Characteristic	NOISEtte	OpenFOAM		
_	FVM approach Hybrid scheme Central scheme Upwind scheme Time integration	Vertex-centered Guseva et. al., 2017 4th order 5th order RK 4th order Potarded time	Cell-centered Travin et. al., 2000 2nd order 2nd order Implicit 2nd order Bhace chift		

Mean flow OSPL SPL at 60^o SPL at 130^o SPL at 150^o

Results: Mean flow

Mean flow OSPL SPL at 60° SPL at 130° SPL at 150°

Results: Mean flow (Still converging)

Mean flow **DSPL** SPL at 60° SPL at 130° SPL at 130°

Results: OSPL

・ロ・・日・・田・・日・ 日・ シック

Mean flow OSPL SPL at 60^o SPL at 130^o SPL at 150^o

Results: SPL at 60°

うせん 正面 (山田)(山田) (日)

Mean flow OSPL SPL at 60^o SPL at 130^o SPL at 150^o

Results: SPL at 130°

Mean flow OSPL SPL at 60^o SPL at 130^o SPL at 150^o

Results: SPL at 150°

<ロ> < 団> < 団> < 団> < 団> < 団> < 団</p>

Conclusions and further work

Conclusions

A.P. Duben, J. Ruano, J. Rigola and F.X. Trias

<ロ> <四> <回> <三> <三> <三> <三> <三> <三</p>

Conclusions and further work

Conclusions

• The results of the numerical simulation of the immersed subsonic turbulent jet are presented.

<ロ> <四> <回> <三> <三> <三> <三> <三> <三</p>

Conclusions and further work

Conclusions

- The results of the numerical simulation of the immersed subsonic turbulent jet are presented.
- All GAM approaches provide similar and appropriate accuracy to predict noise.

Conclusions and further work

Conclusions

- The results of the numerical simulation of the immersed subsonic turbulent jet are presented.
- All GAM approaches provide similar and appropriate accuracy to predict noise.

• The effect of the different GAM approaches becomes more noticeable when high-accuracy schemes are used.

Conclusions and further work

Conclusions

- The results of the numerical simulation of the immersed subsonic turbulent jet are presented.
- All GAM approaches provide similar and appropriate accuracy to predict noise.

• The effect of the different GAM approaches becomes more noticeable when high-accuracy schemes are used.

Further work

Conclusions and further work

Conclusions

- The results of the numerical simulation of the immersed subsonic turbulent jet are presented.
- All GAM approaches provide similar and appropriate accuracy to predict noise.
- The effect of the different GAM approaches becomes more noticeable when high-accuracy schemes are used.

Further work

• A more in-depth analysis is to be done (Finish OF test cases).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions and further work

Conclusions

- The results of the numerical simulation of the immersed subsonic turbulent jet are presented.
- All GAM approaches provide similar and appropriate accuracy to predict noise.
- The effect of the different GAM approaches becomes more noticeable when high-accuracy schemes are used.

Further work

- A more in-depth analysis is to be done (Finish OF test cases).
- Simulations on a finner mesh (G4) are to be done to obtain a better conclusion regarding results convergence.

Acknowledgements

Horizon2020 European Union Funding for Research & Innovation

This work has been developed within the EU H2020 Clean Sky 2 research project "A New Protection Device for FOD-ANTIFOD" (grant ID 821352)

Thanks for your attention

◆□ ▶ ◆□ ▶ ★ 目 ▶ ★ 目 ● ○ ●