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Jet Noise

A problem beginning not so long ago...

Since the 50s, commercial aviation has only increased.

Noise begins to be a problem.

Noise needs to be studied, understood and reduced.

Two main different noise mechanisms can be observed:

Aircraft noise: Landing gears, Wings, Nacelles, Fusellage,...

Engine Noise: Turbine, Fan inlet, Jet,...

Obtaining jet noise values

We can measure noise “directly”.

Wind tunnels, direct measuring,...

Or we can simulate it.

Which is what Computational AeroAcoustics (CAA) does.
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Computational AeroAcoustics

Computational AeroAcoustics needings

CAA requires accurate numerical solutions in the hydrodynamic
region.

This solutions are used as input data in the acoustic solver.

We focus our attention onto two main issues that affect the quality
of the solution:

The numerical discretization.
The turbulence modellization.

Numerical discretization

High-order schemes allow obtaining more accurate numerical
solutions.

However, their implementation onto a general framework is not
always possible.
Additionally, there is a loss of kinetic energy, i.e. not skew-symmetric.
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Computational AeroAcoustics

Numerical discretization (cont.)

Low-order schemes can be used.

As long as mesh is fine enough.

Or finally, we can use 2nd order schemes with extended stencils.

High-resolution schemes without so strict mesh requirements.

Turbulence modelling

RANS-LES models offer a balance between accurate solutions and
computational cost.

More precisely, non-zonal DES aproaches.

Extensively validated and used.
Their current studies focus on Gray-Area Mitigation techniques.
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Gray-Area Mitigation

The Gray-Area problem

Delay from RANS to mesh-resolved turbulence.

Generation of numerical oscillation.
In the field of AeroAcoustics, this implies generating a purely
numerical non-physical noise.

GAM reduction techniques rely on joint usage of:
Special length scale.

∆ω [Chauvet et. al., 2017], ∆̃ω [Mockett et. al., 2015], ∆SLA [Shur
et. al., 2015], ∆lsq [Trias et. al., 2017].

Advanced turbulence model.

σ [Nicoud et. al., 2011], WALE [Nicoud et. al., 2011], S3QR [Trias
et. al., 2015].
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Case and turbulence models

Round jet

Immersed unheated subsonic round jet at ReD = 1.1 · 106, Ma = 0.9.

Profiles imposed at nozzle exit.

Provided by M.Shur and M.Strelets from Saint Petersburg
Polytechnic University.

Used models

Case Turbulence model Length scale

1 S3QR lsq

2 σ ∆̃ω
3 SMG SLA
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Mesh definition

Computational meshes

Mesh characteristics Mesh 1 Mesh 2 Mesh 3

Total cell count 1.52M 4.13M 8.87M
Nϕ 64 80 160

∆x/D at nozzle exit 0.011 0.008 0.008
Min ∆r 0.003D 0.0025D 0.0025D
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Numerical algorithms

The main differences between used codes are:

Characteristic NOISEtte OpenFOAM

FVM approach Vertex-centered Cell-centered
Hybrid scheme Guseva et. al., 2017 Travin et. al., 2000
Central scheme 4th order 2nd order
Upwind scheme 5th order 2nd order

Time integration RK 4th order Implicit 2nd order
FWH equation Retarded time Phase shift
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Central scheme 4th order 2nd order
Upwind scheme 5th order 2nd order

Time integration RK 4th order Implicit 2nd order
FWH equation Retarded time Phase shift
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Conclusions

The results of the numerical simulation of the immersed subsonic
turbulent jet are presented.

All GAM approaches provide similar and appropriate accuracy to
predict noise.

The effect of the different GAM approaches becomes more
noticeable when high-accuracy schemes are used.

Further work

A more in-depth analysis is to be done (Finish OF test cases).

Simulations on a finner mesh (G4) are to be done to obtain a better
conclusion regarding results convergence.
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