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Abstract

The adoption of symmetry-preserving discretizations is presented in terms of the collocated, un-
structured meshes customary of commercial codes. By adopting an algebraic approach, a discretiza-
tion of the convective terms that reduces to the well know staggered method of Harlow and Welch
is presented. The scheme properties are presented along with benchmark simulations concerning
turbulent flows, achieving exact conservation of momentum and kinetic energy.

Since the pioneering work of Harlow and Welch [1], the use of staggered variables has gained
widespread acceptance within the scientific community due to its superior properties for the simu-
lation of incompressible flows. Its use along with symmetry-prserving schemes [2, 3] sets the standard
of high quality, state-of-the-art Direct Numerical Simulation of turbulent flows. However, despite its
known advantages, the popularity drops dramatically in commercial, unstructured codes. The main
reason behind it is the complex formulation required to move from a structured arrangement to an
unstructured one when it comes to construct an overlapping, staggered mesh.

While several attempts have been made in the past to bring these ideas into unstructured meshes,
there is none, to the best of our knowledge, that recovers the original Harlow and Welch formulation
when applied to a structured one. Perot [4] and Zhang et al. [5] discussed its implementation by
interpolating the collocated discretization to the faces, while numerical patologies appeared on its way.
Later on, Hicken et al. [6] introduced a new type of shift transformations to address such a problem.
However, none of the methods introduced above recovers the original Harlow and Welch formulation
when applied to structured meshes. In addition, the use of back and forth interpolation modifies the
spectra of the operator such that it compromises its reliability and efficiency, as it can be seen in
Figure 1.

An alternative approach involves the construction of collocated discretizations that preserve sym-
metry [7]. Nonetheless, this clashes with the solution of the compact Laplace equation, which solves
pressure by enforcing null divergence of the staggered velocity [8]. While this mismatch can be fixed
by interpolation, this may enlarge the kernel dimension of the overall linear system of equations, giving
birth to the well-known checker board problem. While numerical remedies can be found, such as the
popular Rhie and Chow method [9], this introduces a mass conservation error [8].

A remarkable attempt to bring staggered formulations into unstructured meshes was the adoption of
the vorticity formulation. By locating vorticity at the mesh edges it was better suited for an unstructured
mesh. Nonetheless, as was shown by Horiuti and Itami [10], this formulation does not collapse to the
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Figure 1: Dispersion errors for staggered, collocated and interpolated convective operators.

skew-symmetric one unless homogeneous Cartesian meshes are used. In addition, as presented by Zhang
et al. [5], this formulation does indeed preserve kinetic energy and vorticity, while it is unsuitable for
the conservation of kinetic energy and linear momentum at the same time, suggesting the use of the
divergence form instead.

However, the geometric intuition behind the rotational form was indeed to circumvent the construc-
tion of an explicit staggered mesh, which may turn cumbersome in unstructured meshes. Because the
ultimate reason between the mismatch between rotational and discrete forms at the discrete level was
the lack of a discrete chain rule [10]. In this work, we embrace the idea of computing quantities at every
face edge but enforce the fulfillment of the discrete conservation form. By doing so, we present a new
discretization of the convective term which recovers the classical Harlow and Welch formulation when
applied to a Cartesian mesh, but that is also suitable for unstructured meshes.

Equipped with such a discretization, we tackle the simulation of canonical problems, such as the
well-known turbulent channel flow problem, showing the expected converge for second order, staggered
discretizations.
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