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Abstract
The adoption of symmetry-preserving discretiza-

tions is presented in terms of the collocated, unstruc-
tured meshes customary of commercial codes. By
adopting an algebraic approach, a discretization of the
convective terms that reduces to the well know stag-
gered method of Harlow and Welch is presented. The
scheme properties are presented along with bench-
mark simulations concerning turbulent flows, achiev-
ing exact conservation of momentum and kinetic en-
ergy.

1 Introduction
Since the pioneering work of Harlow and Welch

(1965), the use of staggered variables has gained
widespread acceptance within the scientific commu-
nity due to its superior properties for the simulation of
incompressible flows. Its use along with symmetry-
preserving schemes as in Morinishi et al. (1998),
Vasilyev (2000), and Verstappen and Veldman (1997,
2003) sets the standard of high quality, state-of-the-
art Direct Numerical Simulation of turbulent flows.
However, despite its known advantages, the popularity
drops dramatically in commercial, unstructured codes.
The main reason behind it is the complex formula-
tion required to move from a structured arrangement
to an unstructured one when it comes to construct an
overlapping, staggered mesh; particularly when deal-
ing with the construction of the convective term.

While several attempts have been made in the past
to bring these ideas into unstructured meshes, there
is none, to the best of our knowledge, that recovers
the original Harlow and Welch formulation when ap-
plied to a structured one. Perot (2000) and Zhang et al.
(2002a) discussed its implementation by interpolating
the collocated discretization to the faces, while numer-
ical patologies appeared on its way. Later on, Hicken
et al. (2005) introduced a new type of shift transforma-
tions to address such a problem. However, none of the
methods introduced above recovers the original Har-
low and Welch formulation when applied to structured
meshes.

Trias et al. (2014) presented an alternative ap-
proach involving the construction of collocated dis-
cretizations that preserve symmetry. Nonetheless, this
clashes with the solution of the compact Laplace equa-
tion, which solves pressure by enforcing null diver-
gence of the staggered velocity as Trias et al. (2021).
While this mismatch can be fixed by interpolation, this
may enlarge the kernel dimension of the overall linear
system of equations, giving birth to the well-known
checker board problem. While numerical remedies
can be found, such as the popular Rhie and Chow
(1983) method, this introduces a mass conservation er-
ror Trias et al. (2021).

A remarkable attempt to bring staggered formu-
lations into unstructured meshes was the adoption of
the vorticity formulation. By locating vorticity at the
mesh edges it was better suited for an unstructured
mesh. Nonetheless, as was shown by Horiuti and Itami
(1998), this formulation does not collapse to the skew-
symmetric one unless homogeneous Cartesian meshes
are used. In addition, as presented by Zhang et al.
(2002a), this formulation does indeed preserve kinetic
energy and vorticity, while it is unsuitable for the con-
servation of kinetic energy and linear momentum at
the same time, suggesting the use of the divergence
form instead.

The geometric intuition behind the adoption of the
rotational form was to cleverly circumvent the con-
struction of an explicit staggered mesh, which may
turn cumbersome in unstructured meshes. However,
the ultimate reason between the mismatch between ro-
tational and discrete forms at the discrete level was the
lack of a discrete chain rule Horiuti and Itami (1998).
In this work, similarly to the computation of discrete
vorticity, we embrace the idea of computing quantities
at the collocated edges but enforce the fulfillment of
the discrete conservation form. To do so, we use pri-
mal and dual meshes, as well as conservative interpo-
lations between different geometric entities. Making
use of the aforementioned collocated operators only,
we present a new discretization of the convective term
which recovers the classical Harlow and Welch for-
mulation when applied to a Cartesian mesh, but that is



also suitable for unstructured meshes.
Equipped with such a discretization, we assess the

properties of staggered scheme against previous pro-
posals advocating for the interpolation of the collo-
cated discretizations.

2 Mathematical formulation

Collocated
We consider a classical mesh as a coherent collec-

tion geometrical entities in an n-dimensional space.
When n = 3, we talk about the set of points, edges,
faces and cells, which define the sets P , L, S, and V ,
respectively. These are sequenced by its correspond-
ing incidence matrices, Ei, as can be seen in Figure 2.
Incidence matrices represent the boundary elements of
every higher dimensional set (i.e.: two points bound an
edge, edges bound faces and finally faces bound cells).
These incidence matrices are signed, which account
for boundaries orientation. Each element of the mesh
can be given a metric, which are arranged as diagonal
matrices Mi i.e.: identity (dx0), length (dx1), surface
(dx2) and volume (dx3), respectively.

For every geometric entity we may define its cor-
responding wedge dual, which define the sets P̃ , L̃,
S̃, and Ṽ , corresponding to the volume centroids, the
face orthogonal lines, the lines orthogonal faces and
the point volumes, respectively. Those are equipped
with its metric as well and are related to each other by
a sequence of Ẽi = ETn−i. Analogously, the opera-
tors G̃, C̃ and D̃ can be constructed as in Lipnikov et
al. (2014), although additional conditions may be im-
posed on the mesh VanderZee et al. (2010). Although
these quantities require a bit more effort to obtain from
the mesh, they are readily used most of the time under
the hood of most discretization methods.

Physical quantities can be integrated (i.e., dis-
cretized) over each of these sets. Depending on its
physical nature Tonti (1975, 2014), they naturally fit in
one or another. For example: temperature T naturally
fits in P ; and its gradient dT is naturally integrated
along L; while the heat flux f belongs to S̃ owing to
its flux nature but also to its link with the temperature
gradient as f = λdT ; finally, thermal energy e natu-
rally fits in Ṽ as df = e but also because e = CpT .

These matrices can be readily obtained from the
mesh, and allow to construct discrete classical vector
calculus operators:

G̃φc = M̃−11 Ẽ0M̃0φc =
1

∆x

∑
c∈f

±φc ∀f (1)

Cφc = M−12 E1M1φe =
1

Sf

∑
e∈f

±Leφe ∀f (2)

Dφf = M−13 E2M2φf =
1

Vc

∑
f∈c

±Sfφf ∀c (3)

where ± sign accounts for the orientation with respect

to the element under consideration. This information
is readily included into the incidence matrix, whose
rows are in −1, 0, 1. Note that G̃ is the familiar face–
located gradient, which corresponds with the dual gra-
dient, while R and D correspond with the curl and di-
vergence, respectively.

The directional derivative, C(u)φ, is used to de-
fine the transport of a tensor φ by a flow u. It assigns
a flux at every face as UΠc→f where U = diag(u)
is the diagonal arrangement of the face-normal flows
and Πc→f is the cell-to-face interpolator. This interpo-
lator can be constructed by taking the unsigned matrix
abs(Ẽ2) as Πc→f = 0.5abs(Ẽ2), which results in the
typical center difference scheme. Considering the di-
vergence of the flow, we finally obtain:

Cc(u) = DUΠc→f (4)

This setup works well for scalar quantities, but
what happens if we want to treat vector quantities,
such as momentum?

Perot (2000) and Zhang et al. (2002b) proposed a
double interpolation approach consisting on moving
vector components into cell centers, the component-
wise application of the collocated convection as in
equation (4) and a final interpolation from cell to faces.

C0
s (u) = Γc→sCc(u)Γs→c (5)

where Γs→c is the staggered to collocated interpola-
tor, taking a vector field and n-dimensional collocated
vector and returning a stagered one, while Γc→s is the
reciprocal operator (i.e., takes a staggered field and re-
turn a component-wise collocated one).

However, this approach does not recover the classi-
cal Harlow and Welch (1965) approach when applied
to a Cartesian mesh. So, how to construct the convec-
tive operator in a staggered setup by using the collo-
cated mesh operators?

Staggered
In a staggered mesh, we consider the face normals

as a new (point) set of vector–valued quantities. Ve-
locity fits naturally in this set. Taking its wedge–dual
we obtain the (volume) set of vector-valued quantities.
Momentum fits naturally in this one. This staggered
control volume can be constructed by taking a face
and extruding it along its dual (i.e., orthogonal) line.
This results into a prismatic volume which extends at
both sides of the face between centroids of the adja-
cent cells. Its lateral boundaries are defined by the ex-
trusion of the edges bounding the initial face, while a
shift of the original face close both ends of the prism.
While the explicit construction of the staggered mesh
is indeed possible, this involves, most of the times, to
dramatically increase the memory demands of the nu-
merical implementation. So we opt instead for defin-
ing it in terms of the original, collocated mesh.

Following the same reasoning exposed for the di-
rectional derivative in equation (4), we construct the



(a) Dual gradient G̃ (b) Curl R (c) Divergence D

Figure 1: Collocated operators defined over and arbitrary unstructured mesh
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Figure 2: Geometric primal and dual meshes on a col-
located arrangement.

vector valued directional derivative. However, the fol-
lowing must be taken under consideration.

First, faces are not, in general, oriented with
any preferential direction. This implies that ev-
ery face contains information from all dimensions of
the embedding space, so we approach the problem
component-wise, treating each orthogonal direction
(i.e., x, y and z) separately. To do so, we intro-
duce N = (diag(nxf )|diag(nyf )|diag(nzf ))

T ∈
R3nS×nS , where nif is the ith component of the face
normal, while nS is the number of faces. This maps
a face–arranged vector, containing the projection over
the normal of the components of the vector field, into
a face–arranged vector which contain the x, y and z
components of the projection. Thus Nφ is the discrete
counterpart of φn̂, which returns the vector n̂ scaled by
φ. Conversely, the operator n̂ ·~v can be represented as
NT v, where v is the column arrangement of the vector
~v. The adoption of this nomenclature allows to readily
extend local vector operations into the whole mesh.

Second, the boundaries of the staggered control
volume do not correspond with a unique collocated
geometric entity, but rather correspond with the union
of L and V , i.e., the set of edges and the set of cells.
We will treat these two kinds of boundaries separately.
In both cases, interpolators SPf→e and SPf→→c are
constructed a la symmetry preserving, i.e.: by sim-

ple arithmetic mean. The values at the boundaries can
then be arranged as an nL + nV vector by means of
the following block matrix

SPstg =

(
SPf→e
SPf→c

)
(6)

so (I3 ⊗ SPstg)N performs the same interpolation on
x, y and z components.

Third, once we have defined the vector compo-
nents at the boundaries, we produce the flux of ev-
ery component multiplying each of them by the cor-
responding velocity field, u, which in turn consists
of n dimensions as well. Edge, ~ue, and cell, ~uc, ve-
locities are interpolated from the faces in a volume-
weighted fashion, such that the interpolation preserves
the volume integral of all quantities. In particu-

lar, ~ue = 1/2
(
S̃eLe

)−1 ∑
f∈e

Sf L̃fuf , and ~uc =

1/2 (Vc)
−1 ∑

f∈c

(
Sf L̃fuf

)
, where S̃e and L̃f corre-

spond with the wedge-dual surface and length of the
primal edge and face, respectively. We will arrange
them as

Ustg =

(
Ue

Uc

)
(7)

where Ue and Uc stand for the matrix arrangement
of ~ue and ~uc, as we did for N . Accordingly, F =
(I3 ⊗ U) (I3 ⊗ SPstg)Nφf produces a vector con-
taining the fluxes of each x, y and z component of φf
in x, y and z directions, i.e., a vector of 9 components
for the edges and 9 components at the cells, so in total
an 18 components vector!

The staggered divergence operator is then made up
of the side and the base fluxes of the prism. These are
considered in detail next.

Side divergence. Side faces are the result of the
extrusion of each face edges. As such, their orienta-
tion is defined by n̂f × t̂e, which is consistent with the
orientation of the edge within the face. This can be
seen in Figure 3.

Once the fluxes are defined, they are projected over
the side normal and integrated over the side surface.
Considering the flux of a single component, ~F i, we
obtain ~Fe

i
·
(
n̂f × t̂e

)
Le∆x.



Figure 3: Reference coordinates for side faces.

In a finite volume setting, taking the divergence
requires summing up all the contribution from the
side fluxes and then dividing over the staggered vol-
ume as (∆xSf )

−1 ∑
e∈f
± ~Fei ·

(
n̂f × t̂e

)
Le∆x. Af-

ter rearranging, we obtain the side contributions as
n̂f ·S−1f

∑
e∈f
±Le

(
t̂e × ~Fe

i
)

, from where we can rec-

ognize the curl operator R, which acts on every com-
ponent of the flow. Note that the side contribution
consists of the following three steps: taking the cross
product with the tangential edge, taking the (oriented)
sum over all edges and then taking the dot product with
the face normal.

By introducing the following matrix

X(t) =

 0 −diag(tz) diag(ty)
diag(tz) 0 −diag(tx)
−diag(ty) diag(tx) 0


(8)

we can represent the cross product t̂e × ~Fe
i

as the
matrix operator X(t)Fi, where Fi is the row vector
~Fe
i
. Finally, by introducing the projection over the

normal by NT and using the Kronecker product to
make R act on all components, the contribution of
the sides fluxes to the staggered control volume is
NT (I3 ⊗R)X(t)F ie .

Base divergence. Base fluxes are the prod-
uct of the flow and the tensor at base faces (i.e., the
ends). The base area is the same as the face in ques-
tion, so its outer-oriented normal is readily defined
by n̂f . Considering the flux of a single component,
~F i, the flow balance getting in or out of the face
is determined by ~F i · n̂f . Integrating over the sur-
face and dividing over the staggered volume we get
(Sf∆x)

−1
Sf ~Fi · n̂f , which, after rearranging, we ob-

tain the base contribution as n̂f · (∆x)
−1 ∑

c∈f
± ~Fc

i
.

From where we can recognize the gradient operator G̃,
which, acts on each component of the flux. Gathering
all components together we obtain, in matrix notation:
NT

(
I3 ⊗ G̃

)
F ic .

Convective operator. Now, adding both side
and base contributions of the fluxes, we can obtain the

Figure 4: Reference coordinates for base faces.

staggered divergence as:

Dstg = NT
(
I3 ⊗RX(t) I3 ⊗ G̃

)
(9)

Extending it for all i gives the component-wise stag-
gered convection I3 ⊗ (DstgUstgSPstg)N , as stated
at the beginning of this section. In order to obtain
the face-normal component of the vector variable, we
need to project the resulting vector into the face nor-
mal again, yielding the final expression as:

Cstg(u) = NT I3 ⊗ (DstgUstgSPstg)N (10)

which has striking similarities with equation 4.

Comparison with Cartesian mesh
When applying this method method to a classical

Cartesian mesh we recover the classical Harlow and
Welch (1965) scheme. This can be seen as follows.

First, because of the orthogonal arrangement of
the faces, we can distinguish between x−normal,
y−normal and z−normal faces, i.e.: they only have
contributions in one coordinate. Thus, the component-
wise approach proposed here results in a fully decou-
pled set of equations. Second, face-to-cell and face-to-
edge interpolation reduce to the classical symmetry-
preserving 1/2 scheme for the tensor variable. Third,
because of the aforementioned orthogonal arrange-
ment, the matrix X(t) is also greatly simplified, such
that only one row remain. This renders the classical
side flows for the staggered control volume.

Finally, the interpolation of the fluxes is certainly
imposed to collapse to the same discretization as
the surface area–averaged detailed in Verstappen and
Veldman (2003).

3 Preliminary results
As a preliminary stage, we assess the performance

of other staggered discretizations constructed out of
the collocated arrangement in the context of a classi-
cal channel flow at Reτ = 180. Details on the simula-
tion can be found on Verstappen and Veldman (ibid.).
In order to assess the impact of the convective scheme
solely, we will restrict ourselves to the use of Cartesian
meshes, so its eventual patologies are not imputable to
mesh quality.



We compare the interpolation approach proposed
in Zhang et al. (2002a) in Figure 5 with the standard
symmetry-preserving staggered approach as in Ver-
stappen and Veldman (2003) in Figure 6. While over-

0

2

4

6

8

10

12

14

16

18

20

1 10 100

<
u
>

y
+

DNS (KMM)

160x160x80

128x128x64

64x64x32

32x32x16

16x16x8

Figure 5: Mean velocity 〈u〉 profile of a channel
flow at Reτ = 180. Computations are carried on a
stretched Cartesian mesh. The staggered convective
term is constructed by interpolation from cells to faces
of the collocated convective term.

0

5

10

15

20

25

30

1 10 100

<
u
>

y
+

DNS (KMM)

160x160x80

128x128x64

64x64x32

32x32x16

16x16x8

Figure 6: Mean velocity ∠u〉 profile for a channel
flow at Reτ = 180. Computations are carried on a
stretched Cartesian mesh. The staggered convective
term is constructed with the present method, which
collapses to the well-known approach of Harlow and
Welch (1965).

all, results show convergence towards the reference so-
lution, we make the following remarks:

First, for the interpolated approach, the linear
regime is well captured until y+ ≈ 10 for all meshes,
owing to the refinement near the wall, whereas the log-
arithmic region shows an erratic convergence: while
coarse meshes, such as 32 × 32 × 16 fit reasonably
well up to y+ ≈ 30, finer meshes do no follow this
trend but rather depart from the reference before, fol-
lowing a curve which ressembles the reference solu-
tion in slope, but slightly shifted downwards. On the
contrary, the symmetry-preserving staggered approach

shows a poorer performance for coarser meshes, while
its convergence is consistent as the mesh is refined.

Second, convergence of the interpolated approach
is sluggish and seems to stagnate below the expected
centerline velocity. This is certainly in contrast the
symmetry-preserving staggered formulation, which
typically converge from an overpredicted centerline
velocity towards the right value. While the reason
of the later is the numerical diffusion included by
the sub–resolution of the mesh, which laminarizes the
flow, the reason for the underprediction of the center-
line velocity is not clear for the construction of the in-
terpolated scheme.

Beyond the purely observation of the unwanted
convergence exhibit by staggered scheme constructed
from direct approximation, we suggest a possible ex-
planation in terms of the dispersion relation of the con-
vective operator, as shown in Figure 7. While the stag-
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Figure 7: Dispersion relation for staggered (blue), col-
located (green) and interpolated (red) convective oper-
ators.

gered and collocated dispersion errors are well know,
we observe a much more complex behavior of the in-
terpolated schemes, which show a particular disper-
sion relation. This may suggest that the dispersion re-
lation may be altering the turbulent spectra, introduc-
ing artificial turbulence which stop the flow beyond the
expected physical mechanisms in the inertial regime.
Interestingly though, the slope of the curve is well rep-
resented, while the ultimate reasons for the apparent
shift downwards are, thus far, not self evident.

4 Conclusions
A staggered formulation for unstructured meshes

has been proposed in terms of elementary collocated
operators. The resulting scheme collapses to the well-
known staggered scheme proposed by Harlow and
Welch (1965) when a Cartesian mesh is employed, as
in Verstappen and Veldman (2003). This opens the
door to he implementation of staggered formulation on
readily available commercial codes.

By performing a dispersion relation analysis, we



highlight that interpolation strategies for the construc-
tion of staggered methods from a collocated mesh sub-
stantially modify the dispersion relation, introducing
undesired effects to the treatment of turbulence.

In future works, we plan to test this scheme in the
context of unstructured meshes and, once the proper-
ties of the scheme have been cleared, assess its perfor-
mance for the simulation of canonical turbulent flows.
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