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1 Introduction
CFD codes used for industrial applications often apply a collocated grid arrangement. Consistently
applying the central differencing scheme to discretise the Navier-Stokes equations in this arrangement
leads to a wide-stencil Laplacian, in which odd and even cells are decoupled. This decoupling can result
in high frequency, non-physical pressure modes, that lie on the kernel of the discrete Laplacian operator,
commonly known as the checkerboard problem [Ferziger et al., 2002].

To avoid this problem and to decrease computational cost, a compact-stencil Laplacian is often applied
for industrial purposes. This couples neighbouring cells and eliminates the checkerboard problem, at the
cost of introducing numerical dissipation of kinetic energy [Rhie and Chow, 1983, Felten and Lund, 2006].
This dissipation disrupts the accurate capturing of the motion of fluids, especially at the smallest scales
of turbulence [Verstappen and Veldman, 2003], and has been shown to be of a similar order of magnitude
as applied LES models, decreasing their effectiveness [Komen et al., 2021].

Another possibility to eliminate the checkerboard problem is to filter the pressure solution from the
pressure modes that lie on the kernel of the Laplacian operator [Larsson and Iaccarino, 2010]. After
examining the existence and form of this kernel with respect to the mesh and discretisation method
[Hopman et al., 2022], a logical follow-up question arose: Does the existence of a non-trivial Laplacian
kernel always lead to checkerboarding or are there additional requirements?

To address this question, a close examination of the involved computational steps was made and three
possible mechanisms were identified. These mechanisms were analysed using simple numerical tests.

Algorithm 1: Fractional step method (wide & compact stencil)
1. Predictor velocity:

up
c = un

c −∆tΩ−1 (C (un
s )+D)un

c (A 1.1)
2. Poisson equation:

• if wide stencil then:
Lcp̃n+1

c = Mcup
c (A 1.2)

• else if compact stencil then:
Lp̃n+1

c = Mcup
c (A 1.3)

3. Update cell-centered velocities
un+1

c = up
c −Gcp̃n+1

c (A 1.4)
4. Update face-centered velocities:

• if wide stencil then:
un+1

s = Γcsun+1
c (A 1.5)

• else if compact stencil then:
un+1

s = Γcsup
c −Gp̃n+1

c (A 1.6)
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2 Possible causes of checkerboarding
Following the notation of [Trias et al., 2014]. The discrete Navier-Stokes equations were solved using
the fractional step method. Algorithm 1 illustrates this method using Forward Euler time-integration, as
an example. In this method Lc = McGc = MΓcsΓscG is the so-called wide-stencil Laplacian operator and,
if chosen consistently, the interpolators are related by:

Γsc = Ω
−1

Γ
T
csΩs. (1)

This only leaves one degree of freedom, the choice of collocated-to-staggered interpolator, Γcs. Con-
versely, equation (A 1.3) uses a compact-stencil Laplacian, L = MG. This eliminates the checkerboard
problem at the cost of numerical dissipation related to non-zero divergence of the collocated velocities.
Using this method, three different possible origins for the checkerboard problem were identified.

Mechanism 1. When using the compact-stencil method and letting ∆t → 0+, the effect of the second
term on the RHS of step (A 1.1) diminishes until up

c = un
c . This situation leads to:

un
c = un−1

c −Gcp̃n
c = u0

c −Gc

n

∑
i

p̃i
c (2)

Lp̃n+1
c = Mcu0

c −Lc

n

∑
i

p̃i
c (3)

Lp̌n+1
c = Mcu0

c +(L−Lc) p̌n
c (4)

in which p̌n
c = ∑

n
i p̃i

c. This gives a solution to equation (A 1.3) which can contain checkerboard modes
that lie on the kernel of Lc, even though a compact-stencil Laplacian is used.

Mechanism 2. The second method involves the choice in Poisson solver. For a stationary iterative
method and the compact-stencil Laplacian, the Poisson equation is solved as:

p̃n+1
c =

k

∑
i=0

(
I − L̄−1L

)i
L̄−1Mcup

c +
(
I − L̄−1L

)k+1 p̃n
c (5)

where L̄ is the invertible part of L, after splitting the matrix into an invertible and a non-invertible part
as: L = L̄+ L̂, e.g. L̄ = diag(L) for the Jacobian method. The second term on the RHS of equation (5)
accounts for the initial guess and is optional. If the image of L̄−1, Im

(
L̄−1

)
, is non-orthogonal to the

kernel of Lc, Ker(Lc), the solution can contain checkerboard modes. These modes can subsequently be
preserved by the implementation of the initial guess. Similarly, if a preconditioner is used as:

Q−1
L LQ−1

R q̃n+1
c = Q−1

L Mcup
c (6)

where Q−1
R q̃n+1

c = p̃n+1
c , then Im

(
Q−1

R

)
might not be orthogonal to Ker(Lc), possibly leading to checker-

boarding.

Mechanism 3. The third method involves the wide-stencil Laplacian that is implicitly formed by the
divergence and gradient, Mc and Gc, on the RHS of equations (A 1.2), (A 1.3) and (A 1.4). If both
interpolations in these operators are consistent, e.g. both midpoint, we can show that this operation is
symmetric:

McGc = MΓcsΓscG = MΓscΩ
−1

Γ
T
csΩsG =−MΓscΩ

−1
Γ

T
csM

T (7)
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where we used G = −Ω−1
s MT . For symmetric matrices the image and kernel are orthogonal, i.e. LT

c =
Lc → Im(Lc)⊥Ker(Lc), if not, the result of this operation can contain checkerboard modes. This implicit
McGc occurs when rewriting RHS of equation (A 1.2) and (A 1.3) using equations (A 1.1) and (A 1.4):

Mcup
c = Mcup−1

c −McGcp̃n
c −∆tMcΩ

−1 (C (un
s )+D)un

c . (8)

Therefore, checkerboarding might arise if the interpolators in Gc and Mc are chosen to be inconsistent
with respect to each other, i.e. not according to equation (1).

3 Numerical results
To test the different mechanisms, a two-dimensional Taylor-Green vortex was used. Different parameters
were varied to examine their influence on checkerboarding, such as viscosity (ν), Laplacian discretisa-
tion, mesh stretching and Poisson solver. Only by using the mechanisms that were mentioned, was it
possible to produce checkerboarding, see figure 1. By analysing a wide variety of cases, a deeper insight
into the cause of checkerboarding will be provided.

Figure 1: Taylor-Green vortex on a uniform grid, with ν = 0.01 and using a pCG solver for Cholesky factorisation
of the wide-stencil Laplacian. Pressure (left) and norm of checkerboard modes (right).
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