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Abstract
In computational fluid dynamics (CFD), the

checkerboard problem remains a challenging issue
when employing collocated grid arrangements for
complex geometries. It manifests as oscillatory and
non-physical pressure modes, which can disrupt fluid
motion and compromise numerical accuracy. In this
study, a closer look is taken at the mathematical ori-
gins of checkerboarding and a self-regulating solution
to mitigate its adverse effects is proposed. Through
an analysis of the Navier-Stokes equations discretized
using a fractional step method, we identify three key
mechanisms that lead to checkerboarding: the use of
a pressure predictor, the choice of Poisson solver, and
inconsistent interpolators. To quantify checkerboard-
ing, the checkerboarding coefficient is introduced, a
non-dimensional measure that accounts for field de-
coupling on arbitrary meshes. A Taylor-Green vor-
tex and a lid-driven cavity case were used to test the
proposed solution. By introducing a self-regulating
parameter, a balance between reduced checkerboard-
ing and minimal numerical dissipation was achieved.
The results indicate the effectiveness of this approach,
which exhibits stable behavior while maintaining ac-
curacy in the selected cases.

1 Introduction
CFD codes used in industrial applications often

deal with complex geometries and benefit from em-
ploying a collocated grid arrangement. To discretise
the divergence and gradient operators of the Navier-
Stokes equations in such cases, a central differencing
scheme is commonly used. However, this results in a
wide-stencil Laplacian, where neighbouring odd and
even cells become decoupled, leading to the forma-
tion of oscillatory and non-physical patterns. These
patterns remain unnoticed by the CFD algorithm as
they lie within the kernel of the discrete Laplacian.
This issue is referred to as the checkerboard problem
[Ferziger et al. (1996)].

To address the oscillation problem, many col-
located CFD methods use a compact-stencil Lapla-

cian, which couples neighboring cells. However,
this approach introduces numerical dissipation [Rhie
and Chow (1983); Felten and Lund (2006)], dis-
rupting fluid motion, particularly at small turbulent
length scales [Verstappen and Veldman (2003)]. Al-
ternatively, a non-dissipative solution involves filter-
ing out the spurious pressure modes that reside within
the kernel of the wide-stencil Laplacian [Shashank
et al. (2010); Hopman et al. (2022)]. Nevertheless,
this method may not be feasible for complex geome-
tries due to the computational expense of calculating
the kernel. Even when utilizing the compact-stencil
Laplacian, oscillatory patterns may still manifest, es-
pecially with small timesteps in unsteady scenarios
[Felten and Lund (2006)] or when incorporating a pre-
dictor pressure in the velocity predictor [Komen et
al. (2021)].

This has led to the question how the checkerboard
problem arises in the first place, and how it can arise
even without the use of the wide-stencil Laplacian. In
this work, an analysis of the most probable mathemat-
ical origins of the problem is given. To measure the
occurrence of the problem, a suitable quantification
method is derived, even for complex geometries. Sub-
sequently, a Taylor-Green vortex case and a lid-driven
cavity case are used to test the methods to provoke and
quantify checkerboarding. Finally, a solution to the
problem is tested which is low-dissipative and absent
of checkerboarding.

2 Mathematical origins of checker-
boarding

To examine the mathematical origins of checker-
boarding, the Navier-Stokes equations were discre-
tised and a fractional step method (FSM) was used,
for advancement in time. This method is given by al-
gorithm 1, in which Forward Euler time integration is
used as an example, for simplicity. θp controls the
pressure predictor and is usually set to 0 or 1, corre-
sponding to the classical FSM or the Van Kan method,
respectively [Van Kan (1986)]. The notation of algo-
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Algorithm 1: Fractional step method including pressure pre-
dictor. Forward Euler is used as an example
for simplicity.

rithm 1 follows the work of [Trias et al. (2014)], where

L = MG, (1)
Lc = McGc = MΓcsΓscG, (2)

Γsc = Ω−1ΓT
csΩs, (3)

−MT = ΩsG, (4)

−MT
c = −(MΓcs)

T = ΩΓscG = ΩGc, (5)

with Laplacian, L, gradient, G, divergence, M , collo-
cated operators denoted by subscript c, cell-to-face in-
terpolator, Γcs, face-to-cell interpolator, Γsc, cell vol-
umes, Ω and face volumes, Ωs. Note that the Lapla-
cians are symmetric and that Lc and Gc have kernels
that contain spurious modes. Below, an analysis is
given of the possible origins of the checkerboard prob-
lem.

Mechanism 1. When using θp = 0 so that there
is effectively no pressure predictor and letting ∆t →
0+, the second term on the RHS of equation (A1.1)
diminishes until up
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in which p̌n
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the wide-stencil Poisson equation through a stationary
iterative method. Therefore, effectively, the pressure
field gives a solution for Lc, even though a compact-
stencil Laplacian is used. A way to accelerate this ef-
fect even further is by using θp = 1, which causes
a larger part of the pressure field to be multiplied by
the wide-stencil Laplacian, seen on the RHS of equa-
tion (A1.3).

Mechanism 2. The second method involves the
choice of Poisson solver. For a stationary iterative
method and the compact-stencil Laplacian, the Pois-

son equation is solved as:
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where L̄ is a computationally cheaply invertible part
of L, after splitting the matrix as: L = L̄ + L̂, e.g.
L̄ = diag(L) for the Jacobian method. The second
term on the RHS of equation (9) accounts for the ini-
tial guess and is used to reduce the number of nec-
essary iterations. If the image of L̄−1, Im

(
L̄−1

)
, is

non-orthogonal to the kernel of Lc, Ker (Lc), the so-
lution can contain checkerboard modes. These modes
can subsequently be preserved by the implementation
of the initial guess. Similarly, if a preconditioner based
on incomplete factorisations is used as:
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be orthogonal to Ker (Lc), possibly leading to checker-
boarding.

Mechanism 3. The third method involves the
wide-stencil Laplacian that is implicitly formed by
the collocated divergence and gradient, Mc and Gc,
on the RHS of equations (A1.3) and (A1.4). If both
interpolations in these operators are consistent, e.g.
both midpoint, the operator is symmetric and the im-
age and kernel are orthogonal, i.e. LT

c = Lc →
Im (Lc)⊥Ker (Lc). If not, the result of this operation
can contain checkerboard modes. This implicit McGc

occurs when rewriting RHS of equation (A1.3) using
equations (A1.1), (A1.2) and (A1.4):
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Therefore, checkerboarding might arise if the interpo-
lators in Gc and Mc are chosen to be inconsistent with
respect to each other, i.e. not according to equation (3).

From these mechanisms, it was found that checker-
boarding was most easily provoked using θp = 1
and subsequently retained by using an initial guess in
the iterative solver, as seen in the second term of the
RHS of equation (9). In simple laminar cases, letting
∆t → 0+ did not consistently provoke a qualitatively
significant level of checkerboarding. The use of a pre-
conditioner led to similar levels of checkerboarding
as the results without the use of any preconditioner.
And finally, inconsistencies in the interpolators of the
Mc and Gc operators either led to insignificant levels
of checkerboarding or immediate instability where the
solution diverged.

3 Quantification method
If checkerboarding is quantified purely as the

modes of pressure that lie on the kernel of Lc, then the
spurious pressure modes are determined by the mesh.



It was shown by [Hopman et al. (2022)] that in this
case, the modes could only exist on Cartesian meshes,
or could be easily removed by slightly adjusting any
mesh so that there are no more spurious modes on the
kernel of Lc. Furthermore, such a definition does not
include any pressure fields that show the decoupling
only in some parts of the domain. Therefore, a defi-
nition is needed that can quantify the decoupling seen
in checkerboarding on arbitrary meshes and will also
include fields with only local decoupling.

To arrive to such a definition, it is useful to first
consider the pressure error that is often introduced
to resolve the problem. The pressure diffusion en-
ergy budget term, which should globally equal zero,
is given by −un+1

c ΩGcp̃
n+1
c . In methods like algo-

rithm 1 it is non-zero due to the divergence of the col-
located velocity field, given by:
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Using equation (5), the pressure diffusion budget is
rewritten as:
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To make this term independent of temporal integra-
tion method, any dependency on time and θp should
be removed. Moreover, since adding a constant pres-
sure to any solution should not change this term,
the calculation is done after removing the volume-
weighted average pressure from the field, as: Pc =
pc − pT

c Ω1c/
(
1T
c Ω1c

)
, and 1c is the one-vector.

Furthermore, dependency on the norm of the pres-
sure field should be removed, this is done by dividing
out ||Pc|| = PcΩPc Finally, to make the term non-
dimensional, a non-dimensional gradient operator is
introduced, G∗, which is a cell-to-face incidence ma-
trix. So that:
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Finally, the time-independent non-dimensional quan-
tification for checkerboarding is then given by the
checkerboarding coefficient:

Ccb =
PT

c (L∗
c − L∗)Pc
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This term has the nice intuitive quality that the differ-
ence in the numerator is larger for fields with a bigger
component lying on the kernel of G∗

c , which is desir-
able to measure fields with checkerboarding.

Using Ccb, a proper evaluation of checkerboarding
can be done and an examination of the origins of the
problem can be made. To do so, a Taylor-Green vortex
and a lid-driven cavity case were run using θp = 0 and
θp = 1, while measuring Ccb. Since the value of θp
directly provokes checkerboarding, another value of
θp was introduced, that regulates θp through negative
feedback: θp = 1

1+Ccb
. In the absence of checker-

boarding, this coefficient will tend to 1, and it will
deminish to 0 if the levels of checkerboarding increase.
The resulting three solvers are denoted as follows:

Solver θ0 θ1 θcb

θp 0 1 1
1+Ccb

4 Results
The Taylor-Green vortex case was used to exam-

ine numerical dissipation of the solvers, since it is ex-
pected that θ0 shows less checkerboarding at the cost
of being more dissipative. Furthermore, the checker-
boarding coefficient, Ccb, was monitored over time.
This case consists of four two-dimensional vortices on
a square domain with periodic boundaries. The initial
velocity and pressure fields are given by continuous
functions and their decay, which depends on the vis-
cosity, also have analytical solutions. The analytical
velocity and pressure fields over time are given by:
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)
, (20)
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from which the analytical kinetic energy over time is
taken as Ek,Ana = ||uc,Ana||.

The case was run on a 2π × 2π domain on a
Cartesian uniform 33 × 33 mesh. The symmetry-
preserving Runge-Kutta OpenFOAM solver RKSym-
Foam was used, which was developped for [Komen et
al. (2021)] and can be found in the GitHub repository
given in the author’s affiliations. This solver was mod-
ified to include θcb. The Runge-Kutta 3 method was
used for temporal integration with ∆t = 0.01 and the
case was run with ν = {0, 0.01}. The results for the
loss of kinetic energy can be seen in figures 1 and 2.
The effects of θ are clearly visible, with θ0 seemingly
most dissipative. Ccb remained constant and very low
for all cases around Ccb ≈ 0.005, meaning θcb was
able to stay close to 1, hence giving similar results to
θ1.

The lid-driven cavity case consists of a two-
dimensional L × L square box, where the top wall is
moving to the right with velocity UL. The case was
run with L = 1 on a 33× 33 uniform Cartesian mesh,
with UL = 1 and ν = 0.01, leading to a Reynolds



Figure 1: Numerical dissipation of each solver. θ1 and θcb
show conservation of kinetic energy, whereas θ0
shows numerical dissipation.

Figure 2: Numerical dissipation of each solver. All solvers
show numerical dissipation relative to the analyti-
cal solution, with θ0 showing this strongest.

number of Re = ULL/ν = 100. RKSymFoam was
used with the Runge-Kutta 3 method and ∆t = 0.01.
Figures 3 and 4 show close agreement to the results of
[Ghia et al. (1982)].

In figure 5 parts of the resulting pressure fields for
each solver can be seen to give a qualitative impression
of the checkerboard problem. Checkerboarding pat-
terns can clearly be seen in θcb compared to the other
solvers. This confirms that the checkerboard problem
can originate through the inclusion of a pressure pre-
dictor. Interestingly, θcb does not show checkerboard-
ing, suggesting that the value was adjusted as a result
of the arising checkerboarding, thereby self-regulating
its damping. The results for the velocity profiles in fig-
ures 3 and 4 show no negative impact from this damp-
ing, whereas the resulting pressure field is qualitatively
greatly improved.

From figure 6 these findings are confirmed by the
quantification through Ccb. Initially Ccb rises while

Figure 3: Horizontal velocity, U , on the vertical midline
(x = 0.5), compared to results of [Ghia et
al. (1982)]

Figure 4: Vertical velocity, V , on the horizontal midline
(y = 0.5), compared to results of [Ghia et
al. (1982)]

Figure 5: Pressure field near the lid for θ0 (top), θ1 (center)
and θcb (bottom)

the field is establishing, once a stable solution is
reached, the levels of checkerboarding do not change.



θcb nicely balances between θ0 and θ1 indicating that
the self-regulation works properly and the stabilized
value of Ccb = 0.20 indicates that θ = 1/(1 + 0.2) =
0.83 is a proper value for this case.

Figure 6: Checkerboard coefficient Ccb over time showing
that θcb balances between the checkerboard-prone
θ1 and the more dissipative θ0

Finally, a closer look at the pressure in the cells
adjacent to the lid is given in figure 7. From this fig-
ure the spurious behaviour close to the lid can clearly
be seen. Additionally, the solution field for θcb was
filtered from pressure modes that lie on the kernel of
Lc, which was done by projecting the pressure field
onto the kernel modes and subtracting the result from
the original field [Shashank et al. (2010); Hopman
et al. (2022)]. This method is restricted to Cartesian
and other well-structured meshes, for which the kernel
modes can be easily calculated. The filtered solution
is indicated with the markers in figure 7. It can be seen
that filtering slightly improves the result, however it is
not by any means enough to solve the checkerboard
problem.

Figure 7: Spurious pressure fields at the nodes adjacent to
the lid can only be seen for θ1, even after filtering
(indicated by ×)

5 Conclusions
The main mechanisms of the origins of checker-

boarding were identified to be through the use of a
pressure predictor, through the solver and through in-
consistent interpolators. In this work, a focus was put
on recreating the problem through the pressure predic-
tor, since it was easiest to reproduce, even in small
academic cases. In future work, the other mecha-
nisms will be analysed even further by experiment-
ing with larger scale turbulent cases, to see if their ef-
fect is more prevalent in those situations. The modes
that were provoked in this work were shown to also
include pressure modes that lie outside of the ker-
nel of Lc. The filtering method through projection
onto the kernel therefore is not sufficient to solve the
problem, neither is it feasible on complex geome-
tries. The checkerboarding coefficient that was derived
in this work showed to properly quantify the prob-
lem. Its robustness on other, more challenging cases
will be tested in future work. The development of a
new solver through the use of an adjustable pressure
predictor coefficient, that self-regulates through neg-
ative feedback from the checkerboarding coefficient,
showed promising results. However, this solution is
limited to solving checkerboarding caused by a pres-
sure predictor, it has yet to be tested if it can resolve
checkerboarding caused by other effects. This solver
will also be tested on other cases and could prove to
be a low-dissipative, checkerboard-free solver for col-
located grid arrangements.
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