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Objective

@ What are the origins of the oscillations?
@ How can we quantify the oscillations?

@ Can we design a method that diminishes checkerboarding with less numerical dissipation?
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As an example, consider:

@ Compact-stencil Laplacian method

@ No pressure predictor, i.e. p? = 0,

u2+1 — u;C) _ Gcﬁngl
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Just repeatedly pressure correcting!

Lprt? = Mou® — L Pt

LP"+1
LPT+2 = Mu? + (L —LC)PZ+1>+ c

Stationary iterative solver

LP. = M
— Allows for checkerboarding!
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Mechanism 2: p? = p!

Different example:
@ Compact-stencil Laplacian method
@ Pressure predictor: p2 = pZ

u? = R(uc,us) — G.p!
Lﬁlc = M R(umus) - Lcﬁg

—|—L ~n+1 L~l
Lepm = MR(uc,us) + (L — L)B! ) P ™ P

Similar problem

@ Solving a wide-stencil Laplacian if p. — 0.
@ In case of a steady-state solution
@ In case At — 0T, combines well with mechanism 1
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Mechanism 3: Poisson solver

Choice in Poisson solver

o Approximate inverse of L can produce oscillations if Im(L )4 Ker(L)

Stationary iterative method as an example: Concluding mechanism

= —-1 I
o L, or rather L can produce oscillations

Lpe = (L + [)ﬁc = Mcu? PR
pY can preserve them

- —1 . /
Bt =L (Mcu? — Lpy)
Nit 1 Similarly, preconditioners can cause oscillations
o= (/L LYL" Mou? — (1 — L L)Nep? il
i=0 o Q'LQFET™ = Q' M.uP

> o where Qi g7+t = prt!

7 o if Im(QF )/KKer( c)
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u? = u! — At[Con + Dif] — G.p?
u? = uP" 1 — G.p" — At[Con + Dif] — G.pP

M.G. =L
McuP = Mc(uP"~r — At[Con + Dif]) — L.(p" + 55)) cbe c

This also means SP-method automatically filters these type of oscillations!
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Mechanisms of interest

Focus on mechanism 1 & 2
v 1. At - 0"
v 2. p2=10,p¢ Op € [Ov 1]
x 3. Poisson solver

] } limited oscillations observed
x 4. Non-symmetries of operators
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Quantification method
oeo

Broader definition

Starting from the pressure budget term:
—u/QGepe = p/ Mcuc = Atp] (L — Lo)pc € [Atp] Lpc, 0]
Which is strictly dissipative. Dividing out Atp/ Lp.:

Cb— —LZ—LCPC = _M_ _ ||GCpC|| G[O 1]
cb = - - )
pl Lpc P GTQGpc |Gpc|l

0, smooth
1, fully in Ker(L.)

Checkerboard coefficient Cgp

@ Global, non-dimensional, normalised, time-step independent

@ Able to detect local oscillations
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We set 0, in the momentum predictor:
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Which is also non-dimensional and € [0,1]. A new solver can be derived by setting 8, dynamically as
0, =1— Ce.
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We set 0, in the momentum predictor:
w2 = R(u2, u7) — Gep? = R(ul, ul) — G.0,p

Which is also non-dimensional and € [0,1]. A new solver can be derived by setting 8, dynamically as
0, =1— Ce.

0 .p-solver

@ Higher 0, is a known cause of checkerboarding
o Negative feedback through C., can auto-regulate the problem

Solver | 6o 64 Och

Overview of tested solvers: 9, ‘ 0 1 1-Cu
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2D Taylor-Green vortex

@ At no oscillations 0., — 67
@ O and 07 almost completely free from numerical dissipation
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Lid-driven cavity
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Results
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Lid-driven cavity

Quantified checkerboarding
Lid-driven cavity
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o Ker(L.) filtering is inadequate X
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Results
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Channel flow at Re, = 180

Quantified checkerboarding
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@ More oscillations in general,
most for 61

@ 0p settles closer to 6y
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Conclusions
Conclusions

Origins of checkerboarding o (., offers a negative feedback on p2 and

o At — 0T auto-regulates oscillations

o pP=6,p2, 6,€]0,1] @ Almost no numerical dissipation in

@ Poisson solver absence of oscillations

@ Diminishes oscillations where 6, =1
suffers )

@ Non-symmetries of operators

Quantification method

o Ker(L.) is inadequate for quantifying and
filtering

@ Can we use a local C, to diminish
oscillations locally?

o Cp, offers a global non-dimensional
normalised coefficient, independent of
time-step

@ How does it compare to other, generalised
Rhie-Chow interpolation methods?

o What if the origin is different form p27?
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Conclusions
Questions?

Thank you for attending!
Any questions?
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