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Pressure error

Pressure error
The pressure error is linked to the divergence of u

For the compact stencil method: MΓcsun+1
c ̸= 0c

The error arises from the difference in L and Lc

Mcu
n+1
c = MΓcs(u

p
c − Gc p̃

′
c)

=
��������:

Mun+1
s = 0c

M(Γcsu
p
c − G p̃′c) +M(G p̃′c − ΓcsGc p̃

′
c)

= (L− Lc)p̃
′
c
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Objective

Questions
What are the origins of the oscillations?

How can we quantify the oscillations?

Can we design a method that diminishes checkerboarding with less numerical dissipation?
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Mechanism 1: ∆t → 0+

As an example, consider:

Compact-stencil Laplacian method

No pressure predictor, i.e. p̃pc = 0c

un+1
c = upc − Gc p̃

n+1
c

= unc −�������:0c
∆t[Con+ Dif]− Gc p̃

n+1
c

= u0c − Gc

n+1∑
i=1

p̃ic

= u0c − GcPn+1
c

Just repeatedly pressure correcting!

Lp̃n+2
c = Mcu

0
c − LcPn+1

c

LPn+2
c = Mcu

0
c + (L− Lc)Pn+1

c

+LPn+1
c

Stationary iterative solver

LcPc = Mcu0c
→ Allows for checkerboarding!
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Mechanism 2: pp
c = pn

c

Different example:

Compact-stencil Laplacian method

Pressure predictor: ppc = pnc

upc = R(uc ,us)− Gc p̃
n
c

Lp̃′c = McR(uc ,us)− Lc p̃
n
c

Lc p̃
n+1
c = McR(uc ,us) + (Lc − L)p̃′c

+Lc p̃n+1
c − Lp̃′c

Similar problem

Solving a wide-stencil Laplacian if p̃′c → 0c

In case of a steady-state solution

In case ∆t → 0+, combines well with mechanism 1

8 / 20
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Mechanism 3: Poisson solver

Choice in Poisson solver

Approximate inverse of L can produce oscillations if Im(L̃ -1)�⊥Ker(Lc)

Stationary iterative method as an example:

Lp̃c = (L+ L̂)p̃c = Mcu
p
c

p̃k+1
c = L

-1
(Mcu

p
c − L̂p̃kc )

p̃c =

Nit∑
i=0

(I − L
-1
L)iL

-1

︸ ︷︷ ︸
L̃ -1

Mcu
p
c − (I − L

-1
L)Nit p̃0c

Concluding mechanism

L̃ -1, or rather L
-1

can produce oscillations

p̃0c can preserve them

Similarly, preconditioners can cause oscillations

Q -1
L LQ -1

R q̃n+1
c = Q -1

L Mcupc
where Q -1

R q̃n+1
c = p̃n+1

c

if Im(Q -1
R )�⊥Ker(Lc)
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Mechanism 4: Non-symmetries of operators

Inconsistent operators

Symmetry-preserving: Mc = −(ΩGc)
T

If not, Lc = McGc ̸= LTc
And Im(Lc)�⊥Ker(Lc)

Oscillations can then enter via the right hand side of the Poisson equation:

upc = unc −∆t[Con+ Dif]− Gc p̃
p
c

upc = up,n−1
c − Gc p̃

n
c −∆t[Con+ Dif]− Gc p̃

p
c

Mcu
p
c = Mc(u

p,n−1
c −∆t[Con+ Dif])− Lc(p̃

n
c + p̃pc )

McGc = Lc

This also means SP-method automatically filters these type of oscillations!

10 / 20
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Mechanisms of interest

Focus on mechanism 1 & 2

✓ 1. ∆t → 0+

✓ 2. p̃pc = θpp̃nc , θp ∈ [0, 1]

× 3. Poisson solver

× 4. Non-symmetries of operators
limited oscillations observed

11 / 20
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Strict definition

Oscillations are invisible to Gc

Related to Ker(Lc)
However, definitions from Ker(Lc) are inadequate:

Ker(Lc) is inadequate when:

Complex mesh

Certain boundary conditions

Oscillations occur locally → (nearly/fully) orthogonal to Ker(Lc)

→ Ker(Lc)vanishes

12 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Strict definition

Oscillations are invisible to Gc

Related to Ker(Lc)
However, definitions from Ker(Lc) are inadequate:

Ker(Lc) is inadequate when:

Complex mesh

Certain boundary conditions

Oscillations occur locally → (nearly/fully) orthogonal to Ker(Lc)

→ Ker(Lc)vanishes

12 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Strict definition

Oscillations are invisible to Gc

Related to Ker(Lc)
However, definitions from Ker(Lc) are inadequate:

Ker(Lc) is inadequate when:

Complex mesh

Certain boundary conditions

Oscillations occur locally → (nearly/fully) orthogonal to Ker(Lc)

→ Ker(Lc)vanishes

12 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Broader definition

Starting from the pressure budget term:

−uTc ΩGcpc

= pTc Mcuc = ∆tpTc (L− Lc)pc ∈ [∆tpTc Lpc , 0]

Which is strictly dissipative. Dividing out ∆tpTc Lpc :

Ccb = 1− pTc Lcpc
pTc Lpc

= 1− pTc G
T
c ΩGcpc

pTc G
TΩsGpc

= 1− ||Gcpc ||
||Gpc ||

∈ [0, 1]

{
0, smooth

1, fully in Ker(Lc)

Checkerboard coefficient Ccb

Global, non-dimensional, normalised, time-step independent

Able to detect local oscillations

13 / 20
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θcb-solver

We set θp in the momentum predictor:

upc = R(unc ,u
n
s )− Gc p̃

p
c = R(unc ,u

n
s )− Gcθpp̃

n
c

Which is also non-dimensional and ∈ [0, 1]. A new solver can be derived by setting θp dynamically as
θp = 1− Ccb.

θcb-solver

Higher θp is a known cause of checkerboarding

Negative feedback through Ccb can auto-regulate the problem

Overview of tested solvers:
Solver θ0 θ1 θcb
θp 0 1 1− Ccb

14 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

θcb-solver

We set θp in the momentum predictor:

upc = R(unc ,u
n
s )− Gc p̃

p
c = R(unc ,u

n
s )− Gcθpp̃

n
c

Which is also non-dimensional and ∈ [0, 1]. A new solver can be derived by setting θp dynamically as
θp = 1− Ccb.

θcb-solver

Higher θp is a known cause of checkerboarding

Negative feedback through Ccb can auto-regulate the problem

Overview of tested solvers:
Solver θ0 θ1 θcb
θp 0 1 1− Ccb

14 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

θcb-solver

We set θp in the momentum predictor:

upc = R(unc ,u
n
s )− Gc p̃

p
c = R(unc ,u

n
s )− Gcθpp̃

n
c

Which is also non-dimensional and ∈ [0, 1]. A new solver can be derived by setting θp dynamically as
θp = 1− Ccb.

θcb-solver

Higher θp is a known cause of checkerboarding

Negative feedback through Ccb can auto-regulate the problem

Overview of tested solvers:
Solver θ0 θ1 θcb
θp 0 1 1− Ccb

14 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

2D Taylor-Green vortex

Conclusions
At no oscillations θcb → θ1

θcb and θ1 almost completely free from numerical dissipation

15 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

2D Taylor-Green vortex

Conclusions
At no oscillations θcb → θ1

θcb and θ1 almost completely free from numerical dissipation

15 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

2D Taylor-Green vortex

Conclusions
At no oscillations θcb → θ1

θcb and θ1 almost completely free from numerical dissipation
15 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Lid-driven cavity

16 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Lid-driven cavity

16 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Lid-driven cavity

θ0

θ1

θcb

Conclusions
θ1 shows more oscillations, portrayed by Ccb

θcb adequately lowers through feedback

Ker(Lc) filtering is inadequate

17 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Lid-driven cavity

θ0

θ1

θcb

Conclusions
θ1 shows more oscillations, portrayed by Ccb

θcb adequately lowers through feedback

Ker(Lc) filtering is inadequate

17 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Lid-driven cavity

θ0

θ1

θcb

Conclusions
θ1 shows more oscillations, portrayed by Ccb

θcb adequately lowers through feedback

Ker(Lc) filtering is inadequate
17 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Channel flow at Reτ = 180

Conclusions
More oscillations in general,
most for θ1

θcb settles closer to θ0

18 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Channel flow at Reτ = 180

Conclusions
More oscillations in general,
most for θ1

θcb settles closer to θ0

18 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Channel flow at Reτ = 180

Conclusions
More oscillations in general,
most for θ1

θcb settles closer to θ0

18 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Channel flow at Reτ = 180

Conclusions
More oscillations in general,
most for θ1

θcb settles closer to θ0

18 / 20



Introduction Origins of checkerboarding Quantification method Results Conclusions

Conclusions

Origins of checkerboarding

∆t → 0+

p̃pc = θpp̃nc , θp ∈ [0, 1]

Poisson solver

Non-symmetries of operators

Quantification method

Ker(Lc) is inadequate for quantifying and
filtering

Ccb offers a global non-dimensional
normalised coefficient, independent of
time-step

θcb-solver

Ccb offers a negative feedback on p̃pc and
auto-regulates oscillations

Almost no numerical dissipation in
absence of oscillations

Diminishes oscillations where θp = 1
suffers

Outlook
Can we use a local Ccb to diminish
oscillations locally?

How does it compare to other, generalised
Rhie-Chow interpolation methods?

What if the origin is different form p̃pc?
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Questions?

Thank you for attending!
Any questions?
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