On a Conservative Solution to Checkerboarding: Examining the Causes of Non-physical Pressure Modes

J.A. Hopman, À.Alsalti-Baldelou, F.X. Trias, J. Rigola

September 6th-8th, 2023 Barcelona

Contents

1 Introduction

Origins of checkerboarding

Quantification method

4 Results

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
OOO	00000		0000	OO
Checkerboar	ding			

Decoupling of pressure

- Collocated grid arrangement
- Central differencing discretisation
- Wide-stencil gradient, divergence & Laplacian

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
●000	00000	000	0000	OO
Checkerboardin	g			

Decoupling of pressure

- Collocated grid arrangement
- Central differencing discretisation
- Wide-stencil gradient, divergence & Laplacian

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
OOO	00000	000	0000	OO
Checkerboar	rding			

Decoupling of pressure

- Collocated grid arrangement
- Central differencing discretisation
- Wide-stencil gradient, divergence & Laplacian

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0●00	00000	000	0000	00
Equations				

Wide-stencil

Wide & Rhie-Chow

Compact-stencil

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0●00	00000		0000	OO
Equations				

Wide-stencil	Wide & Rhie-Chow	Compact-stencil		
$\mathbf{u}_{c}^{p}=R(\mathbf{u}_{c},\mathbf{u}_{s})-G_{c}\widetilde{\mathbf{p}}_{c}^{p}$				

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0●00	00000	000	0000	00
Equations				

Wide-stencil	Wide & Rhie-Chow	Compact-stencil		
$\mathbf{u}_c^p = R(\mathbf{u}_c,\mathbf{u}_s) - G_c \widetilde{\mathbf{p}}_c^p$				
$L_c ilde{\mathbf{p}}_c' =$	$M\Gamma_{cs}\mathbf{u}_{c}^{p}$	$L \widetilde{\mathbf{p}}_c' = M \Gamma_{cs} \mathbf{u}_c^p$		

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	000	0000	00
Equations				

Wide-stencil	Wide & Rhie-Chow	Compact-stencil			
	$\mathbf{u}_c^ ho=R(\mathbf{u}_c,\mathbf{u}_s)-\mathcal{G}_c\widetilde{\mathbf{p}}_c^ ho$				
$L_{c}\tilde{\mathbf{p}}_{c}' = M\Gamma_{cs}\mathbf{u}_{c}^{\rho} \qquad \qquad L\tilde{\mathbf{p}}_{c}' = M\Gamma_{cs}\mathbf{u}_{c}^{\rho}$					
u'	$\mathbf{\tilde{p}}_{c}^{r+1} = \mathbf{u}_{c}^{p} - \mathcal{G}_{c} \mathbf{\tilde{p}}_{c}^{\prime}, \hspace{0.5cm} \mathbf{\tilde{p}}_{c}^{n+1} = \mathbf{\tilde{p}}_{c}^{p} + \mathbf{\tilde{p}}_{c}^{n+1}$	$\tilde{\mathbf{p}}_{c}^{\prime}$			

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0●00	00000	000	0000	00
Equations				

Wide-stencil	Wide & Rhie-Chow	Compact-stencil			
$\mathbf{u}_c^p = R(\mathbf{u}_c,\mathbf{u}_s) - G_c \widetilde{\mathbf{p}}_c^p$					
$L_c ilde{\mathbf{p}}_c' =$	$M\Gamma_{cs}\mathbf{u}_{c}^{p}$	$L \widetilde{\mathbf{p}}_c' = M \Gamma_{cs} \mathbf{u}_c^p$			
u ⁿ a	$\mathbf{\hat{\mu}}^{+1} = \mathbf{u}_c^{p} - \mathit{G}_c \mathbf{ ilde{p}}_c', \mathbf{ ilde{p}}_c^{n+1} = \mathbf{ ilde{p}}_c^{p} - \mathbf{ ilde{p}}_c'$	$+ \tilde{\mathbf{p}}_{c}'$			
$u^{n+1}_s = \Gamma_{cs} u^{n+1}_c$	$u_s^{n+1} =$	$\Gamma_{cs} \mathbf{u}_{c}^{p} - G \tilde{\mathbf{p}}_{c}^{\prime}$			

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0●00	00000		0000	OO
Equations				

Wide-stencil	Wide & Rhie-Chow	Compact-stencil
	$\mathbf{u}_{c}^{p}=R(\mathbf{u}_{c},\mathbf{u}_{s})-G_{c}\mathbf{ ilde{p}}_{c}^{p}$	
$L_c ilde{\mathbf{p}}_c' =$	$M\Gamma_{cs}\mathbf{u}_{c}^{p}$	$L \widetilde{\mathbf{p}}_c' = M \Gamma_{cs} \mathbf{u}_c^p$
u _c ⁿ⁻	$\mathbf{\mu}^{+1} = \mathbf{\mu}^p_c - G_c \mathbf{\tilde{p}}'_c, \mathbf{\tilde{p}}^{n+1}_c = \mathbf{\tilde{p}}^p_c + \mathbf{\tilde{p}}^n_c$	$\tilde{\mathbf{P}}_{c}^{\prime}$
$u_s^{n+1} = \Gamma_{cs} u_c^{n+1}$	$u_s^{n+1} = \Gamma_c$	$c_{cs}\mathbf{u}_{c}^{p}-G\widetilde{\mathbf{p}}_{c}^{\prime}$
Checkerboarding	$M {f u}_s^{n+1} eq {f 0}_c$	$M {f \Gamma}_{cs} {f u}_c^{n+1} eq {f 0}_c$

Introduction 0000	Origins of checkerboarding 00000	Quantification method	Results 0000	Conclusions OO
Pressure error				
Pressure error				

- $\bullet\,$ The pressure error is linked to the divergence of u
- For the compact stencil method: $M\Gamma_{cs}\mathbf{u}_{c}^{n+1}\neq\mathbf{0}_{c}$
- The error arises from the difference in L and L_c

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
OOOO	00000	000	0000	00
Pressure error				

Pressure error

- $\bullet\,$ The pressure error is linked to the divergence of u
- For the compact stencil method: $M\Gamma_{cs}\mathbf{u}_{c}^{n+1}\neq\mathbf{0}_{c}$
- The error arises from the difference in L and L_c

$$M_{c}\mathbf{u}_{c}^{n+1} = M\Gamma_{cs}(\mathbf{u}_{c}^{p} - G_{c}\tilde{\mathbf{p}}_{c}')$$

$$M\mathbf{u}_{s}^{n+1} = \mathbf{0}_{c}$$

$$= M(\Gamma_{cs}\mathbf{u}_{c}^{p} - G\tilde{\mathbf{p}}_{c}') + M(G\tilde{\mathbf{p}}_{c}' - \Gamma_{cs}G_{c}\tilde{\mathbf{p}}_{c}')$$

$$= (L - L_{c})\tilde{\mathbf{p}}_{c}'$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000		0000	OO
Objective				

Questions

- What are the origins of the oscillations?
- How can we quantify the oscillations?
- Can we design a method that diminishes checkerboarding with less numerical dissipation?

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	●0000	000	0000	OO
Mechanism 1: 4	$\Delta t ightarrow 0^+$			

- Compact-stencil Laplacian method
- No pressure predictor, i.e. $\tilde{\mathbf{p}}_{c}^{p} = \mathbf{0}_{c}$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	●0000	000	0000	OO
Mechanism 1	: $\Delta t ightarrow 0^+$			

- Compact-stencil Laplacian method
- No pressure predictor, i.e. $\tilde{\mathbf{p}}_{c}^{p} = \mathbf{0}_{c}$

$$\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \sum_{i=1}^{n+1} \tilde{\mathbf{p}}_{c}^{i}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \mathbb{P}_{c}^{n+1}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	●0000	000	0000	OO
Mechanism 1	: $\Delta t ightarrow 0^+$			

- Compact-stencil Laplacian method
- No pressure predictor, i.e. $\tilde{\mathbf{p}}_{c}^{p} = \mathbf{0}_{c}$

$$\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \sum_{i=1}^{n+1} \tilde{\mathbf{p}}_{c}^{i}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \mathbb{P}_{c}^{n+1}$$

Just repeatedly pressure correcting!

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	●0000		0000	OO
Mechanism	1: $\Delta t ightarrow 0^+$			

- Compact-stencil Laplacian method
- No pressure predictor, i.e. $\tilde{\mathbf{p}}_{c}^{p} = \mathbf{0}_{c}$

$$\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \sum_{i=1}^{n+1} \tilde{\mathbf{p}}_{c}^{i}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \mathbb{P}_{c}^{n+1}$$

$$\widetilde{\mathbf{p}}_{c}^{n+2} = M_{c}\mathbf{u}_{c}^{0} - L_{c}\mathbb{P}_{c}^{n+1}$$
$$\mathbb{P}_{c}^{n+2} = M_{c}\mathbf{u}_{c}^{0} + (L - L_{c})\mathbb{P}_{c}^{n+1} \downarrow + L\mathbb{P}_{c}^{n+1}$$

Just repeatedly pressure correcting!

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	●0000	000	0000	OO
Mechanism	1: $\Delta t ightarrow 0^+$			

- Compact-stencil Laplacian method
- No pressure predictor, i.e. $\tilde{\mathbf{p}}_{c}^{p} = \mathbf{0}_{c}$

$$\mathbf{u}_{c}^{n+1} = \mathbf{u}_{c}^{p} - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{n+1}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \sum_{i=1}^{n+1} \tilde{\mathbf{p}}_{c}^{i}$$

$$= \mathbf{u}_{c}^{0} - G_{c} \mathbb{P}_{c}^{n+1}$$

Just repeatedly pressure correcting!

$$L\tilde{\mathbf{p}}_{c}^{n+2} = M_{c}\mathbf{u}_{c}^{0} - L_{c}\mathbb{P}_{c}^{n+1}$$
$$L\mathbb{P}_{c}^{n+2} = M_{c}\mathbf{u}_{c}^{0} + (L - L_{c})\mathbb{P}_{c}^{n+1} \downarrow + L\mathbb{P}_{c}^{n+1}$$

Stationary iterative solver

 $L_c \mathbb{P}_c = M_c \mathbf{u}_c^0$ \rightarrow Allows for checkerboarding!

Introdu 0000	ction Origins of checkerboarding ○●○○○	Quantification method	Results 0000	Conclusions OO
Me	chanism 2: $\mathbf{p}_{c}^{p} = \mathbf{p}_{c}^{n}$			
Dit	ferent example:			
•	Compact-stencil Laplacian method			
•	$\underline{Pressure predictor:} \; \mathbf{p}_c^p = \mathbf{p}_c^n$			

Introduction 0000	Origins of checkerboarding ○●○○○	Quantification method 000	Results 0000	Conclusions OO
Mechanism	2: $\mathbf{p}_{c}^{p} = \mathbf{p}_{c}^{n}$			
Different exa	imple:			

- Compact-stencil Laplacian method
- Pressure predictor: $\mathbf{p}_c^p = \mathbf{p}_c^n$

$$\mathbf{u}_{c}^{p} = R(\mathbf{u}_{c}, \mathbf{u}_{s}) - G_{c} \tilde{\mathbf{p}}_{c}^{n}$$

$$L \tilde{\mathbf{p}}_{c}' = M_{c} R(\mathbf{u}_{c}, \mathbf{u}_{s}) - L_{c} \tilde{\mathbf{p}}_{c}^{n}$$

$$L_{c} \tilde{\mathbf{p}}_{c}^{n+1} = M_{c} R(\mathbf{u}_{c}, \mathbf{u}_{s}) + (L_{c} - L) \tilde{\mathbf{p}}_{c}'$$

Introduction 0000	Origins of checkerboarding ○●○○○	Quantification method	Results 0000	Conclusions OO
Mechanism	1 2: $\mathbf{p}_{c}^{p} = \mathbf{p}_{c}^{n}$			
Different ex	ample:			
Compact	-stencil Laplacian method			

• Pressure predictor: $\mathbf{p}_{c}^{p} = \mathbf{p}_{c}^{n}$

$$\mathbf{u}_{c}^{p} = R(\mathbf{u}_{c}, \mathbf{u}_{s}) - G_{c} \tilde{\mathbf{p}}_{c}^{n}$$

$$L \tilde{\mathbf{p}}_{c}' = M_{c} R(\mathbf{u}_{c}, \mathbf{u}_{s}) - L_{c} \tilde{\mathbf{p}}_{c}^{n}$$

$$L_{c} \tilde{\mathbf{p}}_{c}^{n+1} = M_{c} R(\mathbf{u}_{c}, \mathbf{u}_{s}) + (L_{c} - L) \tilde{\mathbf{p}}_{c}' + L_{c} \tilde{\mathbf{p}}_{c}^{n+1} - L \tilde{\mathbf{p}}_{c}'$$

Similar problem

- Solving a wide-stencil Laplacian if $\tilde{\mathbf{p}}_c' \rightarrow \mathbf{0}_c$
- In case of a steady-state solution
- ullet In case $\Delta t
 ightarrow 0^+$, combines well with mechanism 1

Introduction 0000	Origins of checkerboarding	Quantification method	Results 0000	Conclusions OO
Mechanism 3:	Poisson solver			

• Approximate inverse of L can produce oscillations if $Im(\tilde{L}^{-1}) \not\perp Ker(L_c)$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00●00	000	0000	OO
Mechanism 3:	Poisson solver			

• Approximate inverse of L can produce oscillations if $Im(\tilde{L}^{-1}) \not\perp Ker(L_c)$

Stationary iterative method as an example:

$$L\tilde{\mathbf{p}}_{c} = (\overline{L} + \hat{L})\tilde{\mathbf{p}}_{c} = M_{c}\mathbf{u}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{k+1} = \overline{L}^{-1}(M_{c}\mathbf{u}_{c}^{p} - \hat{L}\tilde{\mathbf{p}}_{c}^{k})$$

$$\tilde{\mathbf{p}}_{c} = \underbrace{\sum_{i=0}^{N_{it}}(I - \overline{L}^{-1}L)^{i}\overline{L}^{-1}}_{\overline{L}^{-1}}M_{c}\mathbf{u}_{c}^{p} - (I - \overline{L}^{-1}L)^{N_{it}}\tilde{\mathbf{p}}_{c}^{0}$$

Introduction 0000	Origins of checkerboarding	Quantification method	Results 0000	Conclusions OO
Mechanism 3:	Poisson solver			

• Approximate inverse of L can produce oscillations if $Im(\tilde{L}^{-1}) \not\perp Ker(L_c)$

Stationary iterative method as an example:

$$L\tilde{\mathbf{p}}_{c} = (\overline{L} + \hat{L})\tilde{\mathbf{p}}_{c} = M_{c}\mathbf{u}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{k+1} = \overline{L}^{-1}(M_{c}\mathbf{u}_{c}^{p} - \hat{L}\tilde{\mathbf{p}}_{c}^{k})$$

$$\tilde{\mathbf{p}}_{c} = \underbrace{\sum_{i=0}^{N_{it}}(I - \overline{L}^{-1}L)^{i}\overline{L}^{-1}}_{\widetilde{L}^{-1}}M_{c}\mathbf{u}_{c}^{p} - (I - \overline{L}^{-1}L)^{N_{it}}\tilde{\mathbf{p}}_{c}^{0}$$

Concluding mechanism

•
$$\tilde{L}^{-1}$$
, or rather \overline{L}^{-1} can produce oscillations

• $\tilde{\mathbf{p}}_c^0$ can preserve them

Introduction 0000	Origins of checkerboarding	Quantification method	Results 0000	Conclusions OO
Mechanism 3:	Poisson solver			

• Approximate inverse of L can produce oscillations if $Im(\tilde{L}^{-1}) \not\perp Ker(L_c)$

Stationary iterative method as an example:

$$L\tilde{\mathbf{p}}_{c} = (\overline{L} + \hat{L})\tilde{\mathbf{p}}_{c} = M_{c}\mathbf{u}_{c}^{p}$$

$$\tilde{\mathbf{p}}_{c}^{k+1} = \overline{L}^{-1}(M_{c}\mathbf{u}_{c}^{p} - \hat{L}\tilde{\mathbf{p}}_{c}^{k})$$

$$\tilde{\mathbf{p}}_{c} = \underbrace{\sum_{i=0}^{N_{it}}(I - \overline{L}^{-1}L)^{i}\overline{L}^{-1}}_{\widetilde{L}^{-1}}M_{c}\mathbf{u}_{c}^{p} - (I - \overline{L}^{-1}L)^{N_{it}}\tilde{\mathbf{p}}_{c}^{0}$$

Concluding mechanism

- \tilde{L}^{-1} , or rather \overline{L}^{-1} can produce oscillations
- $\tilde{\mathbf{p}}_c^0$ can preserve them

Similarly, preconditioners can cause oscillations

•
$$Q_L^{-1}LQ_R^{-1}\tilde{\mathbf{q}}_c^{n+1} = Q_L^{-1}M_c\mathbf{u}_c^p$$

• where
$$Q_R^{-1} \tilde{\mathbf{q}}_c^{n+1} = \tilde{\mathbf{p}}_c^{n+1}$$

• if $Im(Q_R^{-1}) \not\perp Ker(L_c)$

Introduction 0000	Origins of checkerboarding	Quantification method	Results 0000	Conclusions OO
Mechanism 4:	Non-symmetries	of operators		

Inconsistent operators

- Symmetry-preserving: $M_c = -(\Omega G_c)^T$
- If not, $L_c = M_c G_c \neq L_c^T$
- And $Im(L_c) \not\perp Ker(L_c)$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	○○○●○	000	0000	00
Mechanism 4: N	lon-symmetries of op	erators		

Inconsistent operators

- Symmetry-preserving: $M_c = -(\Omega G_c)^T$
- If not, $L_c = M_c G_c \neq L_c^T$
- And $Im(L_c) \not\perp Ker(L_c)$

Oscillations can then enter via the right hand side of the Poisson equation:

$$\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{p,n-1} - G_{c} \tilde{\mathbf{p}}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$M_{c} \mathbf{u}_{c}^{p} = M_{c} (\mathbf{u}_{c}^{p,n-1} - \Delta t [Con + Dif]) - L_{c} (\tilde{\mathbf{p}}_{c}^{n} + \tilde{\mathbf{p}}_{c}^{p}) \mathcal{D}_{c} G_{c} = L_{c}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	○○○●○	000	0000	00
Mechanism 4: I	Non-symmetries of op	perators		

Inconsistent operators

- Symmetry-preserving: $M_c = -(\Omega G_c)^T$
- If not, $L_c = M_c G_c \neq L_c^T$
- And $Im(L_c) \not\perp Ker(L_c)$

Oscillations can then enter via the right hand side of the Poisson equation:

$$\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$\mathbf{u}_{c}^{p} = \mathbf{u}_{c}^{p,n-1} - G_{c} \tilde{\mathbf{p}}_{c}^{n} - \Delta t [Con + Dif] - G_{c} \tilde{\mathbf{p}}_{c}^{p}$$
$$M_{c} \mathbf{u}_{c}^{p} = M_{c} (\mathbf{u}_{c}^{p,n-1} - \Delta t [Con + Dif]) - L_{c} (\tilde{\mathbf{p}}_{c}^{n} + \tilde{\mathbf{p}}_{c}^{p}) \downarrow M_{c} G_{c} = L_{c}$$

This also means SP-method automatically filters these type of oscillations!

Introduction 0000	Origins of checkerboarding 0000●	Quantification method 000	Results 0000	Conclusions OO
Mechanisms	of interest			

Focus on mechanism 1 & 2

 \checkmark 1. $\Delta t \rightarrow 0^+$

$$\checkmark 2. ~ \tilde{\mathbf{p}}_c^p = \theta_p \tilde{\mathbf{p}}_c^n, \quad \theta_p \in [0, 1]$$

 \times 3. Poisson solver

limited oscillations observed

 \times 4. Non-symmetries of operators f

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	•00	0000	00
Strict definition				ľ

Oscillations are *invisible* to G_c Related to $Ker(L_c)$ However, definitions from $Ker(L_c)$ are inadequate:

Introduction 0000	Origins of checkerboarding 00000	Quantification method ●○○	Results 0000	Conclusions OO
Strict definit	tion			
Oscillations are	<i>invisible</i> to G_c			

Related to $Ker(L_c)$ However, definitions from $Ker(L_c)$ are inadequate:

$Ker(L_c)$ is inadequate when:

• Complex mesh

$$ightarrow$$
 Ker(L_c)vanishes

- Certain boundary conditions
- Oscillations occur locally \rightarrow (nearly/fully) orthogonal to $Ker(L_c)$

Introduction 0000	Origins of checkerboarding 00000	Quantification method ●00	Results 0000	Conclusions OO
Strict defini	tion			
Oscillations are	invisible to G			

Related to $Ker(L_c)$ However, definitions from $Ker(L_c)$ are inadequate:

$Ker(L_c)$ is inadequate when:

• Complex mesh

$$ightarrow {\sf Ker}({\sf L}_c)$$
vanishes

- Certain boundary conditions
- Oscillations occur locally \rightarrow (nearly/fully) orthogonal to $Ker(L_c)$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

 $-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c}$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{T}(L-L_{c})$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{T}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{T}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{T}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{T}L\mathbf{p}_{c},0]$$

Which is strictly dissipative.

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - rac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T L_c \mathbf{p}_c}{\mathbf{p}_c^T L \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||} \in [0, 1]$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definition	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T \mathcal{L}_c \mathbf{p}_c}{\mathbf{p}_c^T \mathcal{L} \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||} \in [0, 1] \begin{cases} 0, & \text{smooth} \\ 1, & \text{fully in } Ker(\mathcal{L}_c) \end{cases}$$

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○●○	0000	00
Broader definiti	on			

$$-\mathbf{u}_{c}^{\mathsf{T}}\Omega G_{c}\mathbf{p}_{c}=\mathbf{p}_{c}^{\mathsf{T}}M_{c}\mathbf{u}_{c}=\Delta t\mathbf{p}_{c}^{\mathsf{T}}(L-L_{c})\mathbf{p}_{c}\in[\Delta t\mathbf{p}_{c}^{\mathsf{T}}L\mathbf{p}_{c},0]$$

Which is strictly dissipative. Dividing out $\Delta t \mathbf{p}_c^T L \mathbf{p}_c$:

$$C_{cb} = 1 - \frac{\mathbf{p}_c^T \mathcal{L}_c \mathbf{p}_c}{\mathbf{p}_c^T \mathcal{L} \mathbf{p}_c} = 1 - \frac{\mathbf{p}_c^T G_c^T \Omega G_c \mathbf{p}_c}{\mathbf{p}_c^T G^T \Omega_s G \mathbf{p}_c} = 1 - \frac{||G_c \mathbf{p}_c||}{||G \mathbf{p}_c||} \in [0, 1] \begin{cases} 0, & \text{smooth} \\ 1, & \text{fully in } Ker(\mathcal{L}_c) \end{cases}$$

Checkerboard coefficient C_{cb}

- Global, non-dimensional, normalised, time-step independent
- Able to detect local oscillations

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	○○●	0000	OO
$\theta_{\textit{cb}}$ -solver				

We set θ_p in the momentum predictor:

$$\mathbf{u}_c^p = R(\mathbf{u}_c^n, \mathbf{u}_s^n) - G_c \tilde{\mathbf{p}}_c^p = R(\mathbf{u}_c^n, \mathbf{u}_s^n) - G_c \frac{\theta_p}{\rho} \tilde{\mathbf{p}}_c^n$$

Which is also non-dimensional and $\in [0, 1]$. A new solver can be derived by setting θ_p dynamically as $\theta_p = 1 - C_{cb}$.

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000		0000	00
$\theta_{\textit{cb}}\text{-solver}$				

We set θ_p in the momentum predictor:

$$\mathbf{u}_{c}^{p} = R(\mathbf{u}_{c}^{n},\mathbf{u}_{s}^{n}) - G_{c}\tilde{\mathbf{p}}_{c}^{p} = R(\mathbf{u}_{c}^{n},\mathbf{u}_{s}^{n}) - G_{c}\frac{\theta_{p}}{\rho}\tilde{\mathbf{p}}_{c}^{n}$$

Which is also non-dimensional and $\in [0, 1]$. A new solver can be derived by setting θ_p dynamically as $\theta_p = 1 - C_{cb}$.

θ_{cb} -solver

- Higher θ_p is a known cause of checkerboarding
- Negative feedback through C_{cb} can auto-regulate the problem

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000		0000	00
$\theta_{\textit{cb}}\text{-solver}$				

We set θ_p in the momentum predictor:

$$\mathbf{u}_c^p = R(\mathbf{u}_c^n, \mathbf{u}_s^n) - G_c \tilde{\mathbf{p}}_c^p = R(\mathbf{u}_c^n, \mathbf{u}_s^n) - G_c \frac{\theta_p}{\rho} \tilde{\mathbf{p}}_c^n$$

Which is also non-dimensional and $\in [0, 1]$. A new solver can be derived by setting θ_p dynamically as $\theta_p = 1 - C_{cb}$.

θ_{cb} -solver

- Higher θ_p is a known cause of checkerboarding
- Negative feedback through C_{cb} can auto-regulate the problem

Overview of tested solvers:
$$\begin{array}{c|c} Solver & \theta_0 & \theta_1 & \theta_{cb} \\ \hline \theta_p & 0 & 1 & 1 - C_{cb} \end{array}$$

Introduction 0000 Origins of checkerboarding

Quantification metho

Results ●000 Conclusions 00

2D Taylor-Green vortex

Time

troduction 000	Origins of checkerboarding	Quantification method	Results 0●00	Conclusion: OO
id-driven c	avitv			

Introduction 0000	Origins of checkerboarding 00000	Quantification method	Results 00●0	Conclusions OO
_id-driv	ven cavity			
	θ_0			
	θ_1	- 1.4e+00 - 1 - 0.5		
e		0.5 8.1e-01		

1.0 17 / 20

 θ_{cb}

-0.075

-0.100

0.2 0.4 0.6 0.8

х

17 / 20

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	000	000●	00
Channel flow at	$\mathit{Re}_{ au} = 180$			

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000		000	000●	OO
Channel flow at	$Re_{ au}=180$			

troduction Origins of checkerboarding Quantification method Results Conclusions 000 000 000 000 000 000 000 000 000

Channel flow at $Re_{ au} = 180$

troduction Origins of checkerboarding Quantification method Results Conclusions 000 000 000 000 000 000 000 000 000

Channel flow at $Re_{ au} = 180$

Conclusions

- More oscillations in general, most for θ_1
- θ_{cb} settles closer to θ_0

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	000	0000	●O
Conclusions				

- $\Delta t
 ightarrow 0^+$
- $\tilde{\mathbf{p}}_{c}^{p} = \theta_{p} \tilde{\mathbf{p}}_{c}^{n}, \quad \theta_{p} \in [0, 1]$
- Poisson solver
- Non-symmetries of operators

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000	000	0000	●O
Conclusions				

- $\Delta t
 ightarrow 0^+$
- $\tilde{\mathbf{p}}_{c}^{p} = \theta_{p} \tilde{\mathbf{p}}_{c}^{n}, \quad \theta_{p} \in [0, 1]$
- Poisson solver
- Non-symmetries of operators

Quantification method

- *Ker*(*L_c*) is inadequate for quantifying and filtering
- C_{cb} offers a global non-dimensional normalised coefficient, independent of time-step

Introduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000		0000	●O
Conclusions				

- $\Delta t
 ightarrow 0^+$
- $\tilde{\mathbf{p}}_{c}^{p} = \theta_{p} \tilde{\mathbf{p}}_{c}^{n}, \quad \theta_{p} \in [0, 1]$
- Poisson solver
- Non-symmetries of operators

Quantification method

- *Ker*(*L_c*) is inadequate for quantifying and filtering
- C_{cb} offers a global non-dimensional normalised coefficient, independent of time-step

θ_{cb} -solver

- C_{cb} offers a negative feedback on $\tilde{\mathbf{p}}_c^p$ and auto-regulates oscillations
- Almost no numerical dissipation in absence of oscillations
- \bullet Diminishes oscillations where $\theta_{p}=1$ suffers

ntroduction	Origins of checkerboarding	Quantification method	Results	Conclusions
0000	00000		0000	OO
Conclusions				

- $\Delta t
 ightarrow 0^+$
- $\tilde{\mathbf{p}}_{c}^{p} = \theta_{p} \tilde{\mathbf{p}}_{c}^{n}, \quad \theta_{p} \in [0, 1]$
- Poisson solver
- Non-symmetries of operators

Quantification method

- *Ker*(*L_c*) is inadequate for quantifying and filtering
- C_{cb} offers a global non-dimensional normalised coefficient, independent of time-step

θ_{cb} -solver

- C_{cb} offers a negative feedback on $\tilde{\mathbf{p}}_c^p$ and auto-regulates oscillations
- Almost no numerical dissipation in absence of oscillations
- Diminishes oscillations where $\theta_{p}=1$ suffers

Outlook

- Can we use a local *C_{cb}* to diminish oscillations locally?
- How does it compare to other, generalised Rhie-Chow interpolation methods?
- What if the origin is different form $\tilde{\mathbf{p}}_c^p$?

Introduction 0000

Questions?

Origins of checkerboarding

Quantification meth

Results 0000 Conclusions 00

Thank you for attending! Any questions?

