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Abstract. Preserving the operators symmetries at discrete level is the key aspect to enable reliable DNS

and LES simulations of turbulent flows. On the other hand, real-world applications demand robust and

stable numerical methods suitable for complex geometries. In this regard, this work presents a symmetry-

preserving discretization for unstructured collocated grids that, apart from being virtually free of artificial

dissipation, it is shown to be unconditionally stable.

1 Introduction

The essence of turbulence are the smallest scales of motion [1]. They result from a subtle balance be-

tween convective transport and diffusive dissipation. Mathematically, these terms are governed by two

differential operators differing in symmetry: the convective operator is skew-symmetric, whereas the

diffusive is symmetric and negative-definite. At discrete level, operator symmetries must be retained to

preserve the analogous (invariant) properties of the continuous equations [2, 3]: namely, the convective

operator is represented by a skew-symmetric coefficient matrix, the diffusive operator by a symmetric,

negative-definite matrix and the divergence is minus the transpose of the gradient operator. It is note-

worthy to mention that in the last decade, many DNS reference results have been successfully generated

using this type of discretization (see Figure 1, for example). Moreover, we also consider that symmetry-

preserving discretizations form a solid basis for testing sub-grid scale models for LES. Namely, for

coarse grids, the energy of the resolved scales of motion is convected in a stable manner, i.e. the discrete

convective operator transports energy from a resolved scale of motion to other resolved scales without

dissipating any energy, as it should be from a physical point-of-view.

2 Symmetry-preserving discretization on unstructured grids

For unstructured meshes, it is (still) a common argument that accuracy should take precedence over the

properties of the operators. Contrary to this, our philosophy is that operator symmetries are critical to

the dynamics of turbulence and must be preserved. With this in mind, a fully-conservative discretization

method for general unstructured grids was proposed in Ref. [3]: it exactly preserves the symmetries of

the underlying differential operators on a collocated mesh. In summary, and following the same notation

as in Ref. [3], the method is based on a set of five basic operators: the cell-centered and staggered

control volumes (diagonal matrices), Ωc and Ωs, the matrix containing the face normal vectors, Ns, the

cell-to-face scalar field interpolation, Πc→s and the cell-to-face divergence operator, M. Once these
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Figure 1: Examples of DNSs computed using symmetry-preserving discretizations. Top: air-filled (Pr = 0.7)

Rayleigh-Bénard configuration studied in Ref. [1]. Instantaneous temperature field at Ra = 1010 (left) and instan-

taneous velocity magnitude at Ra = 1011 (right) for a span-wise cross section are shown. The latter was computed

on 8192 CPU cores of the MareNostrum 4 supercomputer on a mesh of 5.7 billion grid points. Bottom: DNS of

the turbulent flow around a square cylinder at Re = 22000 computed on 784 CPU cores of the MareNostrum 3

supercomputer on a mesh of 323 million grid points [4] .

operators are constructed, the rest follows straightforwardly from them. Therefore, the proposed method

constitutes a robust and easy-to-implement approach to solve incompressible turbulent flows in complex

configurations that can be easily implemented in already existing codes such as OpenFOAM R© [5].

3 Reconciling accuracy and robustness

Pressure-correction methods on collocated grids suffer two inherent drawbacks: the cell-centered veloc-

ity field is not exactly incompressible and some artificial dissipation is inevitably introduced [3, 6]. The

former error can have severe implications for DNS and LES simulations of turbulent flows since this

artificial dissipation can significantly affect the dynamics of the small scales, even overwhelming the

dissipation introduced by the subgrid-scale LES models. This was clearly observed for LES simulations

using the standard implementation of OpenFOAM R© [7]. Figure 3 schematically represents some of the

existing pressure-velocity coupling algorithms. It is worth to notice that the ideal target, i.e. no artificial

dissipation and no checkerboard, can be achieved by explicitly removing those nonphysical components

of the pressure field that belong to the kernel of the so-called wide-stencil Laplacian. However, in prac-

tice, this can only be applied to Cartesian meshes where these nonphysical pressure modes are known

a priori [8]. Alternatively, it is possible to minimize the amount of dissipation while still keeping the

solution virtually free of checkerboard modes by preserving the symmetries of the discrete operators.
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Figure 2: Schematic summary of existing pressure-velocity coupling approaches. Horizontal axis represents the

amount of artificial dissipation introduced by the pressure gradient term in the momentum equation whereas verti-

cal axis represents the appearance of checkerboard modes in the numerical solutions.

Special attention must be paid to the construction of the face-to-cell and cell-to-face interpolations, in

order to guarantee that the numerical method is unconditionally stable. Apart from this, other relevant

issues such as the time-integration method or the portability challenges imposed by current HPC trends

will be discussed during the Symposium.
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